Archive for the ‘– renewables’ Category

Solar energy: greenhouse emissions becoming lower – will be very low by 2018

February 1, 2017

How clean is solar power? http://www.economist.com/news/science-and-technology/21711301-new-paper-may-have-answer-how-clean-solar-power?fsrc=scn%2Ffb%2Fte%2Fbl%2Fed%2Fhowcleanissolarpower

A new paper may have the answer

Dec 10th 2016 THAT solar panels do not emit greenhouse gases such as carbon dioxide when they are generating electricity is without question. This is why they are beloved of many who worry about the climate-altering potential of such gases. Sceptics, though, observe that a lot of energy is needed to make a solar panel in the first place. In particular, melting and purifying the silicon that these panels employ to capture and transduce sunlight needs a lot of heat. Silicon’s melting point, 1,414°C, is only 124°C less than that of iron.

Silicon is melted in electric furnaces and, at the moment, most electricity is produced by burning fossil fuels. That does emit carbon dioxide. So, when a new solar panel is put to work it starts with a “carbon debt” that, from a greenhouse-gas-saving point of view, has to be paid back before that panel becomes part of the solution, rather than part of the problem. Observing this, some sceptics have gone so far as to suggest that if the motive for installing solar panels is environmental (which is often, though not always, the case), they are pretty-much useless.

 Wilfried van Sark, of Utrecht University in the Netherlands, and his colleagues have therefore tried to put some numbers into the argument. As they report in Nature Communications, they have calculated the energy required to make all of the solar panels installed around the world between 1975 and 2015, and the carbon-dioxide emissions associated with producing that energy. They also looked at the energy these panels have produced since their installation and the corresponding amount of carbon dioxide they have prevented from being spewed into the atmosphere. Others have done life-cycle assessments for solar power in the past. None, though, has accounted for the fact that the process of making the panels has become more efficient over the course of time. Dr Van Sark’s study factors this in.

Panel games  To estimate the number of solar panels installed around the world, Dr Van Sark and his team used data from the International Energy Agency, an autonomous intergovernmental body. They gleaned information on the amount of energy required to make panels from dozens of published studies. Exactly how much carbon dioxide was emitted during the manufacture of a panel will depend on where it was made, as well as when. How much emitted gas it has saved will depend on where it is installed. A panel made in China, for example, costs nearly double the greenhouse-gas emissions of one made in Europe. That is because China relies more on fossil fuels for generating power. Conversely, the environmental benefits of installing solar panels will be greater in China than in Europe, as the clean power they produce replaces electricity that would otherwise be generated largely by burning coal or gas.

Once the team accounted for all this, they found that solar panels made today are responsible, on average, for around 20 grams of carbon dioxide per kilowatt-hour of energy they produce over their lifetime (estimated as 30 years, regardless of when a panel was manufactured). That is down from 400-500 grams in 1975. Likewise, the amount of time needed for a solar panel to produce as much energy as was involved in its creation has fallen from about 20 years to two years or less. As more panels are made, the manufacturing process becomes more efficient. The team found that for every doubling of the world’s solar capacity, the energy required to make a panel fell by around 12% and associated carbon-dioxide emissions by 17-24%.

The consequence of all this number-crunching is not as clear-cut as environmentalists might hope. Depending on the numbers fed into the model, global break-even could have come as early as 1997, or might still not have arrived. But if it has not, then under even the most pessimistic assumptions possible it will do so in 2018. After that, solar energy’s environmental credentials really will be spotless.
Advertisements

Solar energy powers South Australia’s desert Sundrop Farms

November 21, 2016

Desert farm grows 180,000 tomato plants using only sun and seawater http://www.mnn.com/your-home/organic-farming-gardening/stories/desert-farm-grows-180000-tomato-plants-using-only-sun-and-seawater

Farms that grow food in arid deserts, without groundwater or fossil fuels, could be the future of agriculture. BRYAN NELSON October 10, 2016, No soil, no pesticides, no fossil fuels, and no groundwater. And yet, a thriving farm in the heart of the arid Australian desert. How is this possible?

An international team of scientists has spent the last six years fine-tuning a system that pipes seawater in from the ocean and desalinates it using a state-of-the-art concentrated solar energy plant. The water is then used to irrigate 180,000 tomato plants grown in coconut husks instead of soil, kept in a network of greenhouses.

The result is Sundrop Farms, a commercial-scale facility located just off the Spencer Gulf in South Australia that began construction in 2014. Today it’s producing an estimated 17,000 tons of tomatoes per year to be sold in Australian supermarkets.

Given the increasing demand for fresh water around the world — a problem that’s particularly apparent in the sunburned landscape of South Australia — this might just represent future of large-scale farming, especially in coastal desert regions that have previously been non-arable.

The heart of the farm is the 23,000 mirrors that reflect sunlight towards a 115-meter high receiver tower. All of that concentrated sunlight produces an immense amount of power, up to 39 megawatts. That’s more than enough to cover the desalination needs of the farm and supply all the electricity needs of the greenhouses.

The seawater, too, has other purposes besides just irrigation. During scorching hot summers, seawater-soaked cardboard lines the greenhouses to help keep the plants at optimal temperature. Seawater also has the remarkable effect of sterilizing the air, meaning that chemical pesticides are unnecessary.

All in all, the facility cost around 200 million dollars to get up and running. That might sound excessive, but in the long run the facility should save money compared to the costs of conventional greenhouses that require fossil fuels for power. It’s a self-sustaining, cost-efficient design so long as the initial investment can be provided. Facilities similar to the Australian one are already being planned for Portugal and the U.S., as well as another in Australia. Desert areas like those seen in Oman, Qatar and the United Arab Emirates could be next in line.

“These closed production systems are very clever,” said Robert Park of the University of Sydney, Australia, to New Scientist. “I believe that systems using renewable energy sources will become better and better and increase in the future, contributing even more of some of our foods.”

The future of energy – decentralised renewables

November 21, 2016
Why the Future Belongs to Decentralized Renewables, Not Centralized Hydrogen and Giga-Scale Nuclear November 18, 2016 by Energy Post

“……….Let me develop the real reasons why conventional renewables are likely to emerge as the dominant primary energy sources in the first half of the
21st century. The fundamental advantages of renewables, as revealed by practical experience in China as well as in industrialised countries like Germany where an energy transformation is well under way, are these.As they scale renewable energies do not present greater and greater hazards. Instead they are relatively benign technologies, without serious riskThey are clean (low to zero-carbon); they are non-polluting (important in China and India with their high levels of particulate pollution derived from coal); they tap into inexhaustibleenergy sources; and they have close-to-zero running costs since they do not need fuel. They are also diffuse, which should be viewed as an advantage, since this means that renewable sources are decentralised, and can be harvested by both large and by small operations. So they are eminently practicable.Some advantages of renewables are not at all obvious and need to be made explicit. Fundamentally, they are scalable. They can be built in modular fashion – one solar panel, 100 solar panels, 1000 solar panels. As they are replicated in this fashion so their power ratings continue to rise, without complexity cutting back on efficiency. This cannot be said of nuclear reactors, which have an optimal operational size – below which or above which the plant under-performs.

Moreover as they scale they do not present greater and greater hazards. Instead they are relatively benign technologies, without serious risks.

 

When they use hazardous materials, such as the cadmium in Cd-Te solar, the solution would be to recycle materials in order to minimise the use and waste of virgin materials.

Most importantly, the superiority of conventional renewables lies in their cost reduction trends which are linked to the fact that they are always the products of manufacturing – and mass production manufacturing, where economies of scale really play a role. This means that they offer genuine energy security in so far as manufacturing can in principle be conducted anywhere. There are no geopolitical pressures stemming from accidents of chance where one country has deposits of a fossil fuel but another does not. Manufactured devices promise an end to the era in which energy security remains closely tied to geopolitics and the projection of armed force. As Hao Tan and I put it in our article published in Nature, manufacturing renewables provides the key to energy security.

Manufacturing is characterised by improving efficiencies as experience is accumulated – with consequent cost reductions captured in the learning or experience curve. Manufacturing generates increasing returns; it can be a source of rising incomes and wealth without imposing further stresses on the earth. Add to these advantages that renewables promise economic advantages of the first importance: they offer rural employment as well as urban employment in manufacturing industry; they offer an innovative and competitive energy sector; and they offer export platforms for the future.

The real driver of the renewable energy revolution is not government policy, or business risk-taking, or consumer demand. It is, quite simply, the reduction of costs

This is to list the advantages of renewables without even mentioning their low and diminishing carbon emissions. Indeed they offer the only real long-term solution to the problem of cleaning up energy systems.

With all these advantages, it is little wonder that China and now India are throwing so much effort into building renewable energy systems at scale. These are not exercises undertaken for ethical or aesthetic purposes, but as national development strategies of the highest priority.

So the real driver of the renewable energy revolution is not government policy, or business risk-taking, or consumer demand. It is, quite simply, the reduction of costs – to the point where renewables are bringing down costs of generating power to be comparable with the use of traditional fossil fuels, and with the promise of reducing these costs further still. Supergrids are also being promoted for renewables, but these are very different conceptions, based on integrating numerous fluctuating sources in IT-empowered grids, offering the same practicable, scalable and replicable energy future.

Against these advantages, the obstacles regularly cited are small indeed. There is the fluctuating nature of renewables, which can be addressed by various forms of systems integration (smart grids, demand response) and of course through energy storage, which is moving into the same kind of cost reduction learning curve that has characterised solar and wind power, promising rapid diffusion of both commercial and domestic energy storage units. With rapidly falling costs of storage providing the buffer that can even out fluctuating levels of generation, there is no further serious argument against renewables……..

by 

This article is based on a scientific paper by John A. Mathews, Competing principles driving energy futures: Fossil fuel decarbonization vs. manufacturing learning curves, which was published in Futures in November 2016 (.http://www.sciencedirect.com/science/article/pii/S0016328715300227)

John Mathews is author of the Greening of Capitalism: How Asia is Driving the Next Great Transformation”, published by Stanford University Press: http://www.sup.org/books/title/?id=24288. His latest book, “China’s Renewable Energy Revolution” (co-authored with Hao Tan) was published by Palgrave Pivot in September 2015: http://www.palgrave.com/page/detail/chinas-energy-revolution-john-a-mathews/?isb=9781137546241.

See his author’s archive on Energy Post.

Transition from nuclear power to renewables- problems to deal with

September 12, 2016

There are good reasons for California to phase out nuclear power, Huffington Post, Johann Saathoff,MP German BundestagCoordinator of energy policy for the Social Democratic Party in the German Bundestag  07/22/2016 “……..In Germany the transition to renewable energies is proceeding although there are challenges to overcome. Two thirds of electricity in Germany is currently generated from renewables. We do not expect demand for electricity to fall in the future. Coupling the electricity market sector (including electric mobility) and the heat market will create overcapacity. This will be a good thing and any overcapacity can be put to good use in the electricity market.

One of the greatest obstacles at present to expanding renewables is the failure to expand existing and build new power grids. The energy transition and the decentralised production of electricity involves the need to adapt the entire power supply system in Germany and renew large parts. Up to now power stations have been located in the vicinity of the major power consumers; in future power stations will be much smaller and distributed throughout the country. They will also not supply electricity on a continuous basis. Sector coupling between the electricity market, heat market and mobility means that fewer networks have to be built since part of the electricity can be consumed locally.

It is important to ensure, however, that security of supply is guaranteed as the production of renewable energy increases. There is therefore a need for an intelligent grid with intelligent, i.e. controllable, electricity meters at least for the big energy consumers. Up to now the production of electricity has been geared to consumption. In the new energy world it will be possible to adjust the consumption curve to the production curve. It will be possible, as an example, for cold stores to be cooled down further at times when there is too much power in the grid. They will not then need any power if a few hours later there is too little power in the grid. For the operator of the cold store there will be a commercial incentive in the form of lower prices if he adjusts the way he runs his cold store to comply with the electricity market.

The cold store would thus function as a type of energy store. This, along with other storage systems such as pumped hydroelectric and compressed air energy storage, chemical storage and power-to-gas and power-to-heat plants, will become increasingly important with the growth of renewable energy and in the context of supply security. In the transitional phase, security of supply can be ensured locally by small modular gas power stations.

In Germany there is a broad consensus in society in favour of the phasing out of nuclear power by 2022. The reasons for phasing out nuclear power for us are the same as in California and elsewhere: the lack of a solution regarding the storage of nuclear waste, environmental damage and the risk of accidents. The danger of an accident comes from human error in operating the plant, a lack of maintenance and wear. In the past there was also a failure to properly appreciate the danger of terrorist attacks. These dangers apply to the plant itself, to the energy supply for the region in question and to the nation as a whole. Phasing out nuclear power and changing over to decentralised renewable energy removes a central target of attack from potential aggressors. Thus the energy transition also contributes to national security.

There may be a consensus within society in favour of the energy transition and the resulting structural changes that are required, but the state needs to be proactive in the process in order to ensure that this consensus is maintained. This means that people employed up to now in the nuclear sector must be given prospects for the future and those regions which have benefitted in economic terms up to now from nuclear power stations must be shown other options for economic development. One way would be to provide incentives in these regions for building production facilities for storage systems, cabling, wind farms or parts thereof.

One possibility for ensuring people’s support for the energy transition is to encourage them to be actively involved in citizens’ energy companies. This means they have a direct stake in the commercial success of the energy transition. In addition or perhaps alternatively the local authorities as the real agencies responsible for providing public services and representatives of local citizens, should hold large stakes in these energy companies. In this way all citizens participate in the energy transition, not just those who can afford to invest…..http://www.huffingtonpost.com/johann-saathoff/there-are-good-reasons-fo_b_11133916.html

Exposing nuclear lobby disinformation about renewable energy

June 11, 2016

Renewable energy versus nuclear: dispelling the myths http://www.theecologist.org/News/news_analysis/2987577/renewable_energy_versus_nuclear_dispelling_the_myths.html Mark Diesendorf 19th April 2016 

Don’t believe the spurious claims of nuclear shills constantly doing down renewables, writes Mark Diesendorf. Clean, safe renewable energy technologies have the potential to supply 100% of the world’s electricity needs – but the first hurdle is to refute the deliberately misleading myths designed to promote the politically powerful but ultimately doomed nuclear industry.

Nuclear energy and renewable energy (RE) are the principal competitors for low-carbon electricity in many countries.

As RE technologies have grown in volume and investment, and become much cheaper, nuclear proponents and deniers of climate science have become deniers of RE.

The strategies and tactics of RE deniers are very similar to those of climate science deniers.

To create uncertainty about the ability of RE to power an industrial society, they bombard decision-makers and the media with negative myths about RE and positive myths about nuclear energy, attempting to turn these myths into conventional wisdom.

In responding to the climate crisis, few countries have the economic resources to expand investment substantially in both nuclear and RE. This is demonstrated in 2016 by the UK government, which is offering huge long-term subsidies to nuclear while severely cutting existing short-term subsidies to RE.

This article, a sequel to one busting the myth that we need base-load power stations such as nuclear or coal, examines critically some of the other myths about nuclear energy and RE. It offers a resource for those who wish to question these myths. The myths discussed here have been drawn from comments by nuclear proponents and RE opponents in the media, articles, blogs and on-line comments.

Myth 1: Base-load power stations are necessary to supply base-load demand.

Variant: Base-load power stations must be operated continuously to back-up variable renewable energy systems.

Variant: Renewable energy is too variable to reliably make the principal contribution to large-scale electricity supply.

This myth is refuted in my previous article, ‘Dispelling the nuclear ‘baseload’ myth: nothing renewables can’t do better!‘ To quote three introductory paragraphs:

Underlying this claim are three key assumptions. First, that baseload power is actually a good and necessary thing. In fact, what it really means is too much power when you don’t want it, and not enough when you do. What we need is flexible power (and flexible demand too) so that supply and demand can be matched instant by instant.

The second assumption is that nuclear power is a reliable baseload supplier. In fact it’s no such thing. All nuclear power stations are subject to tripping out for safety reasons or technical faults. That means that an electricity system that includes a 3.2GW nuclear power station needs at least 3.2GW of expensive ‘spinning reserve’ that can be called in at a moment’s notice.

The third is that the only way to supply baseload power is from baseload power stations, such as nuclear, coal and gas, designed to run flat-out all the time whether their power is actually needed or not. That’s wrong too.

Myth 2: There is a renaissance in nuclear energy

Global nuclear electricity production in terawatt-hours per year (TWh/y) peaked in 2006. The percentage contribution of nuclear energy to global electricity peaked at 17.5% in 1993 and declined to under 11% in 2014. Nowadays annual global investment in nuclear is exceeded by investment in each of wind and solar.

Over the past decade the number of global start-ups of new nuclear power reactors has been approximately balanced by the number of closures of existing reactors. While several European countries are phasing out nuclear energy, most growth in nuclear reactor construction is occurring in China, Russia, India and South Korea.
See also Dr Jim Green’s detailed article busting this myth wide open: ‘Nuclear renaissance? Failing industry is running flat out to stand still‘.

Myth 3: Renewable energy is not ready to replace fossil fuels, and nuclear energy could fill the (alleged) gap in low-carbon energy supply

Most existing nuclear power reactors are classified as Generation 2 and are widely regarded as obsolete. The current generations of new nuclear power stations are classified as Generation 3 and 3+. Only four Generation 3 reactors have operated, so far only in Japan, and their performance has been poor. No Generation 3+ reactor is operating, although two are under construction in Europe, four in the USA and several in China.

All are behind schedule and over-budget – the incomplete European reactors are already triple their budgeted prices. Not one Generation 4 power reactor – e.g. fast breeder, integral fast reactor (IFR), small modular reactor – is commercially available. So it can be argued that modern nuclear energy is not ready.

On the other hand, wind and solar are both growing rapidly and are still becoming cheaper. Large wind and solar farms can be planned and built in 2-3 years (compared with 10-15 years for nuclear) and are ready now to replace fossil and nuclear electricity.

Myth 4: Nuclear weapons proliferation is independent of civil nuclear energy

Variant: Nuclear weapons explosives cannot be made from the type of plutonium produced in conventional nuclear power reactors, or from the thorium fuel cycle, or from the IFR.

Six countries (France, India, North Korea, Pakistan, South Africa and the UK) have covertly used civil nuclear energy to assist them to develop nuclear weapons. In addition, at least seven countries (Argentina, Australia, Brazil, Iran, Libya, South Korea and Taiwan) have used civil nuclear energy to commence covertly developing nuclear weapons, but then terminated their programs (references in Diesendorf 2014).

Thus nuclear energy is facilitating proliferation and therefore is increasing the probability of nuclear war. Even if the probability of nuclear war is small (and this is debatable), thepotential impacts are huge. Therefore it is inappropriate to ignore the proliferation risk, which is probability multiplied by potential impact.

Thorium reactors are under development in India. Thorium is not fissile, so it first has to be bombarded with neutrons to convert it into uranium-233, which is. Like any fissile element, U-233 can be used either to generate heat and hence electricity, or as a nuclear explosive. Nuclear weapons with U-233 as part of the explosive have been tested by the USA (Teapot MET test), Soviet Union and India.

Some nuclear proponents incorrectly claim the hypothetical IFR would be proliferation-proof. The IFR has only ever operated as a single prototype in the USA. The project was cancelled by Congress in 1994 for reasons including funding, doubts about whether it was needed, and concerns about its potential for proliferation.

The IFR offers at least two proliferation pathways. Once it has separated most of the highly radioactive fission products from the less radioactive transuranics by means of an experimental process known as pyroprocessing, it would be easier to extract the plutonium-239 from the transuranics by means of conventional chemical reprocessing and use it to produce nuclear weapons.

An alternative proliferation pathway would be to modify an IFR to enable it to be used as a breeder reactor to produce weapons grade plutonium from uranium-238. (Wymer et al. 1992).

Myth 5: The death toll from the Chernobyl disaster was 28-64 people

These absurdly low estimates are obtained by considering only short-term deaths from acute radiation syndrome and ignoring the major contribution to fatalities, namely cancers that appear over several decades.

For Chernobyl, the lowest serious estimate of future cancer deaths was “up to 4,000” by the Chernobyl Forum (2006), a group of United Nations agencies led by the International Atomic Energy Agency (IAEA).

The IAEA has the conflicting goals of promoting nuclear energy and applying safeguards against inter alia accidents and proliferation. Estimates from authors with no obvious conflict of interest range from 16,000 from the International Agency for Research on Cancer to 93,000 from a team of international medical researchers from Ukraine, Russia and elsewhere.

See also Dr Jim Green’s excellent article: ‘Radiation harm deniers? Pro-nuclear environmentalists and the Chernobyl death toll‘.

Myth 6: The problem of permanently storing high-level nuclear wastes has been solved

All high-level waste is currently in temporary storage in pools or dry casks. Not one permanent repository is operating in the world.

Development of the proposed US repository at Yucca Mountain in the USA was terminated after expenditure of $13.5 billion. Underground repositories are under construction in Sweden and Finland. Even if the technical and economic challenges could be solved, the social problem of managing or isolating the repositories for 100,000 years remains.

Myth 7: The IFR could ‘burn up’ the world’s nuclear wastes

The Integrated Fast Reacor or IFR only exists as a design. If it were ever developed, it would become another proliferation pathway (see Myth 4). At best it could convert most transuranics to fission products, so underground long-term repositories would still be needed.

For a fuller exposition of the problems of IFRs and other ‘new’ reactor designs, see Amory Lovins’s classic 2009 essay, recently republished on The Ecologist: ‘‘New’ nuclear reactors? Same old story‘.

Myth 8: Nuclear energy emits no or negligible greenhouse gas emissions

Neither nuclear energy nor most renewable technologies emit CO2 during operation. However, meaningful comparisons must compare whole life-cycles from mining the raw materials to managing the wastes.

Nuclear physicist and nuclear supporter Manfred Lenzen (2008) found average life-cycle emissions for nuclear energy, based on mining high-grade uranium ore, of 60 grams of CO2 per kilowatt-hour (g/kWh), for wind of 10-20 g/kWh and for natural gas 500-600 g/kWh.

Now comes the part that most nuclear proponents try to ignore or misrepresent. The world has only a few decades of high-grade uranium ore reserves left. As the ore-grade inevitably declines, the fossil fuel used to mine (with diesel fuel) and mill uranium increases and so do the resulting greenhouse gas (GHG) emissions.

Lenzen calculates that, when low-grade uranium ore is used, the life-cycle GHG emissions will increase to 131 g/kWh. Others have obtained higher levels. This is unacceptable in terms of climate science. Only if mining low-grade ore were done with renewable fuel, or if fast breeder reactors replaced burner reactors, could nuclear GHG emissions be kept to an acceptable level, but neither of these conditions is likely to be met for decades at least.

For more on this topic, see also Professor Keith Barnham’s excellent article: ‘False solution: Nuclear power is not ‘low carbon’‘.

Myth 9: Nuclear energy is a suitable partner for renewable energy in the grid

Making a virtue out of necessity, nuclear proponents claim that we can have both (new) nuclear and renewables in the same grid. However, nuclear energy is a poor partner for a large contribution of variable renewable energy in an electricity supply system for four reasons:

1. Nuclear power reactors are inflexible in operation (see Myth 10), compared with open cycle gas turbines (which can be biofuelled), hydro with dams and concentrated solar thermal (CST) with thermal storage. Wind and solar PV can supply bulk energy, balanced by flexible, dispatchable renewables, as discussed previously.

2. When a nuclear power station breaks down, it is usually off-line for weeks or months. For comparison, lulls in wind last typically for hours or days, so wind does not need expensive back-up from base-load power stations – flexible dispatchable RE suffices.

3. Wind and solar farms are cheaper to operate than nuclear (and fossil fuels). Therefore wind and solar can bid lower prices into electricity markets and displace nuclear from base-load operation, which it needs to pay off its huge capital costs.

4. Renewables and nuclear compete for support policies from government including scarce finance and subsidies. For example, the UK government commitment to Hinkley C, with enormous subsidies, has resulted in removal of subsidies to on-shore wind and solar PV.

Myth 10: Nuclear power reactors can generally be operated flexibly to follow changes in demand / load

The limitations, both technical and economic, are demonstrated by France, with 77% of its electricity generated from nuclear.

Since the current generation of nuclear power stations is not designed for load-following, France can only operate some of its reactors in load-following mode some of the time – at the beginning of their operating cycle, with fresh fuel and high reserve reactivity – but cannot continue to load-follow in the late part of their cycle. This is acknowledged by theWorld Nuclear Organisation.

Load-following has two economic penalties for base-load power stations:

  • Substantially increased maintenance costs due to loss of efficiency and the expansion and contraction cycles associated with rising and falling reactor temperatures;
  • Reduced earnings during off-peak periods. Yet, to pay off of their high capital cost, the reactors must be operated as much as possible at rated power.

France reduces the second economic penalty by selling its excess nuclear energy to neighbouring countries via transmission line, while parts of Australia soak up their excess base-load coal energy with cheap off-peak water heating.

Myth 11: Renewable energies are more expensive than nuclear

Variant: Nuclear energy receives smaller subsidies than RE.

Both myths are false. Levelised costs of energy (LCOE) depend on the number of units installed at a site, location, capital cost, interest rate and capacity factor (actual average power output divided by rated power). LCOE estimates for nuclear are $108/MWh based on pre-2014 data and $97-132/MWh based on pre-2015 data (Lazard 2015).

The IPCC estimate does not include subsidies, while the Lazard estimate includes US federal government subsidies excluding loan guarantees and decommissioning. None of these US estimates takes account of the huge escalation in costs of the two European Pressured Water Reactors (EPR) under construction (mentioned in Myth 3).

The EPR proposed for the UK, Hinkley C, is being offered a guaranteed inflation-linked price for electricity over 35 years, commencing at £92.5/MWh ($144/MWh) in 2012 currency. That’s now pushing up towards £100 in today’s money, almost three times the current wholesale price of electricity in the UK. The subsidy package also includes a UK Treasury loan guarantee of originally £10 billion ($15.3 billion). Its capped liability for accidents and inadequate insurance is likely to fall upon the British taxpayer.

In 2015 multinational financial consultants Lazard estimated unsubsidised costs for on-shore wind across the USA of $32-77/MWh. An independent empirical study by US Department of Energy (Fig. 46) found levelised power purchase agreement prices in 2014 for wind in the US interior (region with the highest wind speeds) of $22/MWh, and in the west (region with lowest wind speeds) about $60/MW.

The US government subsidises wind with a Production Tax Credit of $23/MWh over 10 years, so this must be added to the DoE figures to obtain the actual costs. In Brazil in 2014, contracts were awarded at a reverse auction for an average unsubsidised clearing price of 129.3 real/MWh (US $41/MWh).

Lazard estimated unsubsidised costs of $50-70/MWh for large-scale solar PV in a high insolation region of the USA. In New Mexico, USA, a Power Purchase Agreement for $57.9/MWh has been signed for electricity from the Macho Springs 50 MW solar PV power station; federal and state subsidies bring the actual cost to around $80-90/MWh depending on location.

In Chile, Brazil and Uruguay, unsubsidised prices at reverse auctions are in the same range (Diesendorf 2016). Rooftop solar ‘behind the meter’ is competitive with retail grid electricity prices in many regions of the world with medium to high insolation, even where there are no feed-in tariffs.

For CST with thermal storage, Lazard estimates $119-181/MWh.

Comparing subsidies between nuclear and RE is difficult, because they vary substantially in quantity and type from country to country, where nuclear subsidies may include some or all of the following (Diesendorf 2014):

  • government funding for research and development, uranium enrichment, decommissioning and waste management;
  • loan guarantees;
  • stranded assets paid for by taxpayers and electricity ratepayers;
  • limited liabilities for accidents covered by victims and taxpayers;
  • generous contracts for difference.

Subsidies to nuclear have either remained constant or increased over the past 50 years, while subsidies to RE, especially feed-in tariffs, have decreased substantially (to zero in some places) over the past decade.

Myth 12: Renewable energy is very diffuse and hence requires huge land areas

Hydro-electric dams and dedicated bioenergy crops can occupy extensive areas, but renewable energy scenarios for few regions have large additional contributions from these sources.

Ground based solar farms located may occupy significant land, however this is often marginal land, and need not preclude other uses such as grazing. Rooftop solar, which is widespread in Germany and Australia, and bioenergy derived from crop residues, occupy no additional land.

On-shore wind farms are generally located on agricultural land, with which they are highly compatible. The land occupied is typically 1-2% of the land spanned which deniers often ignore and misleadingly quote the land area spanned.

For an economic optimal mix of 100% renewable electricity technologies calculated for the Australian National Energy Market, total land area in km2/TWh/y is about half that of equivalent nuclear with a hypothetical buffer zone of radius 20 km, as belatedly established for Fukushima Daiichi (Diesendorf 2016).

Myth 13: Energy payback periods (in energy units, not money) of renewable energy technologies are comparable with their lifetimes

Nowadays typical energy payback periods in years are: solar PV modules 0.5-1.8; large wind turbines 0.25-0.75; CST (parabolic trough) 2; nuclear (high-grade-uranium ore) 6.5; nuclear (low-grade-uranium ore) 14 (references in Diesendorf 2014, Table 5.2).

The range of values reflects the fact that energy payback periods, and the related concept of energy return on energy invested, depend on the type of technology and its site. Critics of RE often quote much higher energy payback periods for RE technologies by assuming incorrectly that each has to be backed-up continuously by a fossil fuelled power station.

Myth 14: Danish electricity prices are among the highest in Europe, because of the large contribution from wind energy

Danish retail electricity prices are among the highest in Europe, because electricity is taxed very heavily. This tax goes into consolidated revenue – it does not subsidise wind energy. Comparing tax-free electricity prices places Denmark around the European average.

Wind energy in Denmark is subsidised by feed-in tariffs funded by a very small increase in retail electricity prices, which is offset by the decrease in wholesale electricity prices resulting from the large wind energy contribution.

Myth 15: Computer simulation models of the operation of electricity grids with 80-100% renewable electricity are meaningless over-simplifications of real systems

Although a model is indeed a simplified version of reality, it can be a powerful low-cost tool for exploring different scenarios. Most modellers start with simple models, in order to understand some of the basic relationships between variables. Then, step-by-step, as understanding grows, they make the models more realistic.

For example, initially the UNSW Australia group simulated the operation of the Australian National Electricity Market with 100% RE in hourly time-steps spanning a single year. Wind farms were simply scaled up at existing sites. The next model included economic data and calculated the economic optimal mix of RE technologies and then compared costs with low-carbon fossil fuelled scenarios.

Recently the simulations were extended to six years of hourly data, the RE supply region was decomposed into 43 sub-regions and a limit was imposed on non-synchronous supply. Meanwhile, researchers at Stanford University have shown that all energy use in the USA, including transport and heat, could be supplied by renewable electricity.

Their computer simulations use synthetic data on electricity demand, wind and sunshine taken every 30 seconds over a period of six years. Using synthetic data allows modellers to include big hypothetical fluctuations in the weather. Such sensitivity analysis strengthens the power and credibility of the models.

Strangely, some of the loudest critics of simulation modelling of electricity systems, a specialised field, have no qualifications in physical science, computer science, engineering or applied mathematics. In Australia they include two biologists, a social work academic and an occupational therapist.

Renewables could be scaled up long before nuclear

Computer simulation models and growing practical experience suggest that electricity supply in many regions, and possibly the whole world, could transition to 100% renewable energy (RE).

Most of the RE technologies are commercially available, affordable and environmentally sound. There is no fundamental technical or economic reason for delaying the transition.

The pro-nuclear and anti-RE myths disseminated by nuclear proponents and supporters of other vested interests do not stand up to examination. Given the political will, RE could be scaled up long before Generation 3 and 4 nuclear power stations could make a significant contribution to electricity supply.

 


 

Mark Diesendorf is Associate Professor in Interdisciplinary Environmental Studies in the School of Biological, Earth and Environmental Sciences at the University of New South Wales.

References

Diesendorf M (2014) Sustainable Energy Solutions for Climate Change. London: Routledgeand Sydney: NewSouth Publishing.

Diesendorf M (2016) ‘Subjective judgments in the nuclear energy debate’. Conservation Biology doi:10.1111/cobi.12692. (See the Supporting Information as well as the short article.)

Wymer RG et al. (1992) An Assessment of the Proliferation Potential and International Implications of the Integral Fast Reactor. Martin Marietta K/IPT-511 (May); prepared for the Departments of State and Energy.

Germany’s transition from nuclear energy to renewables

November 19, 2015

Germany Could Be a Model for How We’ll Get Power in the Future
The European nation’s energy revolution has made it a leader in replacing nukes and fossil fuels with wind and solar technology. National Geographic, By Robert Kunzig Photographs by Luca Locatelli  OCTOBER 15, 2015 “…..Germany’s Audacious Goal

Germany has Europe’s second highest consumer electricity prices, yet public support for its energiewende—an aggressive transition to renewable energy—is at an impressive 92 percent. The support is rooted in an eco-friendly culture, a collective desire to abandon nuclear energy, and laws that allow citizens to profit from selling their energy to the grid. Roughly 27 percent of Germany’s electricity is from renewables; the goal is at least 80 percent by 2050……….

Fell, who was installing PV panels on his roof in Hammelburg, realized that the new law would never lead to a countrywide boom: It paid people to produce energy, but not enough. In 1993 he got the city council to pass an ordinance obliging the municipal utility to guarantee any renewable energy producer a price that more than covered costs. Fell promptly organized an association of local investors to build a 15-kilowatt solar power plant—tiny by today’s standards, but the association was one of the first of its kind. Now there are hundreds in Germany.

In 1998 Fell rode a Green wave and his success in Hammelburg into the Bundestag. The Greens formed a governing coalition with the SPD. Fell teamed up with Hermann Scheer, a prominent SPD advocate of solar energy, to craft a law that in 2000 took the Hammelburg experiment nationwide and has since been imitated around the world. Its feed-in tariffs were guaranteed for 20 years, and they paid well.

“My basic principle,” Fell said, “was the payment had to be so high that investors could make a profit. We live in a market economy, after all. It’s logical.”…….

The biogas, the solar panels that cover many roofs, and especially the wind turbines allow Wildpoldsried to produce nearly five times as much electricity as it consumes. Einsiedler manages the turbines, and he’s had little trouble recruiting investors. Thirty people invested in the first one; 94 jumped on the next. “These are their wind turbines,” Einsiedler said. Wind turbines are a dramatic and sometimes controversial addition to the German landscape—“asparagification,” opponents call it—but when people have a financial stake in the asparagus, Einsiedler said, their attitude changes.

It wasn’t hard to persuade farmers and homeowners to put solar panels on their roofs; the feed-in tariff, which paid them 50 cents a kilowatt-hour when it started in 2000, was a good deal. At the peak of the boom, in 2012, 7.6 gigawatts of PV panels were installed in Germany in a single year—the equivalent, when the sun is shining, of seven nuclear plants. A German solar-panel industry blossomed, until it was undercut by lower-cost manufacturers in China—which took the boom worldwide.

Fell’s law, then, helped drive down the cost of solar and wind, making them competitive in many regions with fossil fuels. One sign of that: Germany’s tariff for large new solar facilities has fallen from 50 euro cents a kilowatt-hour to less than 10. “We’ve created a completely new situation in 15 years—that’s the huge success of the renewable energy law,” Fell said.

Germans paid for this success not through taxes but through a renewable-energy surcharge on their electricity bills. This year the surcharge is 6.17 euro cents per kilowatt-hour, which for the average customer amounts to about 18 euros a month—a hardship for some, Rosenkranz told me, but not for the average German worker. The German economy as a whole devotes about as much of its gross national product to electricity as it did in 1991.

In the 2013 elections Fell lost his seat in the Bundestag, a victim of internal Green Party politics. He’s back in Hammelburg now, but he doesn’t have to look at the steam plumes from Grafenrheinfeld: Last June the reactor became the latest to be switched off. No one, not even the industry, thinks nuclear is coming back in Germany…….

Germany’s big utilities have been losing money lately—because of the energiewende, they say; because of their failure to adapt to the energiewende, say their critics. E.ON, the largest utility, which owns Grafenrheinfeld and many other plants, declared a loss of more than three billion euros last year.

“The utilities in Germany had one strategy,” Flasbarth said, “and that was to defend their track—nuclear plus fossil. They didn’t have a strategy B.” Having missed the energiewende train as it left the station, they’re now chasing it. E.ON is splitting into two companies, one devoted to coal, gas, and nuclear, the other to renewables. The CEO, once a critic of the energiewende, is going with the renewables.

Vattenfall, a Swedish state-owned company that’s another one of Germany’s four big utilities, is attempting a similar evolution. “We’re a role model for the energiewende,” ……..

Vattenfall, however, plans to sell its lignite business, if it can find a buyer, so it can focus on renewables. It’s investing billions of euros in two new offshore wind parks in the North Sea—because there’s more wind offshore than on and because a large corporation needs a large project to pay its overhead. “We can’t do onshore in Germany,” Wiese said. “It’s too small.”

Vattenfall isn’t alone: The renewables boom has moved into the North and Baltic Seas and, increasingly, into the hands of the utilities.  Merkel’s government has encouraged the shift, capping construction of solar and onshore wind and changing the rules in ways that shut out citizens associations. Last year the amount of new solar fell to around 1.9 gigawatts, a quarter of the 2012 peak. Critics say the government is helping big utilities at the expense of the citizens’ movement that launched the energiewende.

At the end of April, Vattenfall formally inaugurated its first German North Sea wind park, an 80-turbine project called DanTysk that lies some 50 miles offshore. The ceremony in a Hamburg ballroom was a happy occasion for the city of Munich too. Its municipal utility, Stadtwerke München, owns 49 percent of the project. As a result Munich now produces enough renewable electricity to supply its households, subway, and tram lines. By 2025 it plans to meet all of its demand with renewables……

Though Germany isn’t on track to meet its own goal for 2020, it’s ahead of the European Union’s schedule. It could have left things there—and many in Merkel’s CDU wanted her to do just that. Instead, she and Economics Minister Sigmar Gabriel, head of the SPD, reaffirmed their 40 percent commitment last fall……..http://ngm.nationalgeographic.com/2015/11/climate-change/germany-renewable-energy-revolution-text

Charles Koch – saboteur of clean energy business

October 19, 2015

How Charles Koch Prevents Clean Energy Businesses From Succeeding TruthOut 02 September 2015 By Matthew KasperRepublic Report | News Analysis Last week, President Obama correctly singled out the Koch brothers – Charles and David – and the Koch-funded network for standing in the way of America’s clean energy future. Charles Koch responded saying he was “flabbergasted” after hearing Obama’s remark. He continued, “We are not trying to prevent new clean energy businesses from succeeding.” This statement is, at best, highly misleading.

Charles Koch states that he believes government should be smaller and it should not subsidize businesses, including any form of energy business. But while he acknowledges that the fossil fuel businesses he owns benefit tremendously from government subsidies, he doesn’t refuse those benefits or do anything to stop those policy choices.  Meanwhile, the Kochs use their political influence and funding for efforts to repeal laws designed to support the deployment of more renewable electricity. Specifically, their political network’s agenda includes weakening renewable energy standards, preventing customers from installing solar panels (by charging fees on people that go solar), and protecting the government monopolized electric utilities.

The facts are indisputable.

Note: For more background, read this full briefing on the Koch’s web of influence across American society.

Here are the facts:

  • Arizona Public Service Company (APS), the largest electric utility company in Arizona, admitted that it worked with the 60 Plus Association, a Virginia-based nonprofit seniors advocacy group receiving Koch money, to support the utility company’s proposal to add fees on homeowners with solar panels. Here is anadvertisement paid for by 60 Plus Association attacking solar energy in Arizona.
  • 60 Plus Association is now working with the utility companies in Florida to preserve the status quo and the state’s outdated business model, and prevent customers from purchasing electricity from third party solar companies.
  • Americans For Prosperity has also worked in Kansas and North Carolina to repeal, weaken, or freeze those states renewable energy standards. In 2013, AFP flew Willie Soon to Kansas where he testified in front of state legislators that global warming isn’t a problem as part of AFP’s attempt to completely repeal the renewable energy standard. James Taylor, from the ExxonMobil and Koch-funded Heartland Institute, attended an AFP event the same year to increase support for repealing the state’s standard, and he also testified against the law. Furthermore, Koch Industries’ lobbyist Jonathan Small worked behind the scenes in the repeal efforts. Small held private talks with Representative Dennis Hedke (R-Wichita) about legislation to eliminate the law. In 2015, the standard waschanged to a voluntary one after legislators threatened to impose an excise tax on wind energy. Mike Morgan, a lobbyist for Koch Industries, joined Rep. Hedke and Jeff Glendenning of AFP at the announcement.
  • Additionally, Koch-controlled foundations approved grants for Art Hall, director of the University of Kansas’ Center for Applied Economics, to research the state’s renewable energy standard. Lee Fang at The Intercept writes, “The Koch money was part of an ongoing project Hall described as an effort to develop “intellectual products” to be used “as a tool in economic policy debates… Following his grant request, Hall testified before the Kansas legislature in 2014 in favor of repealing the state renewable energy portfolio.”
Last month, President Obama called out the Koch brothers for standing in the way of the clean energy future…….http://www.truth-out.org/news/item/32615-how-charles-koch-prevents-clean-energy-businesses-from-succeeding

Analysing Switzerland’s transition from nuclear power to renewable energy and energy conservation

July 31, 2015

It is a simple statement of fact that Germany today produces more solar and wind power than the entire projected electricity demand for Switzerland in 2050. What is possible in Germany should be manageable in Switzerland too. ………Conservation, greater efficiencies, alternative energy sources, the smart grid, and the introduction of new technologies mean that Switzerland should be readily able to find ways to replace the energy  lost by the closing of its existing nuclear power plants. 

Small country, big challenge: Switzerland’s upcoming transition to sustainable energy,Bulletin of the Atomic Scientists, 25 July 15 Dominic A. Notter

Abstract
Switzerland has long met a good portion of its energy needs by using nuclear power. But in the wake of the accident at Fukushima, the country will have to turn elsewhere—while still remaining true to its history of self-sufficiency and energy independence. This effort is made more complicated by fears that one of its traditional energy sources, hydropower, may no longer be as reliable as in the past. But with a combination of energy conservation, greater efficiencies, alternative energy sources, the “smart grid,” and the introduction of new technologies currently on the drawing board, the country may readily be able to replace the energy lost by the closing of its existing nuclear power plants. And the loss of the snowpack and glaciers (due to climate change) may not be as dire for Switzerland’s hydropower as first anticipated…….

a nation of only 8 million people—a bit larger in population than the state of Massachusetts—has five nuclear power plants, making Switzerland one of the top seven nuclear-powered nations on the planet on a per capita basis (IAEA, 2014). (The nuclear power plant at Beznau, in the country’s far north, is the world’s oldest operating nuclear power plant.) All told, nine percent of Switzerland’s total energy demand is met by nuclear power—a figure triple that of the United States (World Nuclear Association, 2015a).

Another telling statistic is that nearly 40 percent of Swiss electrical generation comes from nuclear power (see Figure 1) [in original] . To give a sense of what that proportion means, only 19 percent of US electricity is generated from nuclear power (World Nuclear Association, 2015b). …….

Rising discontent

But the old status quo regarding Switzerland’s nuclear power plants will not hold. There has been increasing public resistance to nuclear power in Switzerland over time, starting with a loss-of-coolant accident in 1969 at a small pilot test reactor in the village of Lucens. Though largely overlooked by the outside world, the event did cause a partial core meltdown (Swissinfo.ch, 2003World Nuclear Association, 2015a). There were no fatalities and the underground cave housing the facility was successfully sealed up (Britt, 2013) but the incident planted discontent……..

shut down they will be, because the groundswell of public opinion against nuclear energy is having a powerful effect. Perhaps in response to continuing public concern, on October 27, 2014 the Swiss Federal Office of Public Health began distributing iodide tablets to everyone who lives within 31 miles of a nuclear power plant in Switzerland, an endeavor that would include 4.6 million people—more than half the country’s population. The idea behind the program is that if a disaster happened that involved the release of radiation, people living downwind could quickly saturate their thyroid glands with normal iodine and prevent the absorption of any harmful radioactive iodine. Critics call such “pre-distributing” a drop in the bucket; others suggest it would be more effective to limit the consumption of milk, cheese, cream, and yogurt after a nuclear accident (Bosley and Bennett, 2014)—not a popular idea in a country known for its dairy industry…….

An ambitious vision

With so many forces pulling in different directions, the government launched several large-scale research projects in recent years including the Swiss Competence Centers for Energy Research, known as SCCER CREST (http://www.sccer-crest.ch/), to plan for the future.

Each center has a different focus; one investigates scientific and technological aspects of changes in energy while another studies social, economic, and regulatory aspects.

These centers have seven “action areas”: energy efficiency; electrical grids; energy storage; power supplies; economy, environment, law, and behavior; mobility; and biomass.

The goal is to gradually phase out of nuclear power and into renewables by 2034 and to be largely independent of fossil fuels. Reaching it is based upon the idea of combining highly efficient energy production processes with substantial reductions in energy consumption.

Optimistic scenarios show that the amount of carbon produced per person could be reduced from the current 5.7 tons of carbon dioxide to about 1 to 1.5 tons.

In Switzerland, energy consumption per capita has already been decreasing in a moderate way since 1990 (Swiss Statistics, 2015). To hit the target, average energy consumption needs to drop by about another 30 to 40 percent by the year 2050 when Switzerland’s electricity consumption is expected to be about 60 terawatt hours (TWh), or 60 billion kilowatt hours (kWh)……….

At first glance, these may seem like impossibly large numbers of solar cells and wind turbines; however, Germany already gets 30 TWh from photovoltaics and another 45 TWh from wind power (Burger, 2014). These figures far exceed the projected Swiss electrical demand for 2050.

In addition, there is enormous potential for electricity savings in all the appliances and gadgets circulating today. In assessing the potential for electricity savings in households and industry, the Swiss Energy Foundation found that more than 25 TWh could be saved if all inefficient, energy-hungry old devices were replaced with best available new technology (SAFE, 2015). This includes better, more efficient lighting, such as compact fluorescents and light-emitting diodes; more energy-efficient computers, printers, and communications devices; improved electrical motors in industry; more efficient electric baseboard heating units and hot water heaters; and improved building services, to name a few.

If Switzerland exploited all the potential in energy efficiency, the amount of electricity saved would equal all the electricity produced from all nuclear power plants in Switzerland in 2013.

What’s more, there is a basic, fundamental, major change to the electrical grid that occurs when electricity production is switched from a small number of large nuclear power plants to a large number of small-scale plants that use renewable sources. While it will take a huge amount of money to renovate the grid—about 18 billion Swiss francs, or roughly 18.6 billion US dollars as of April 2015—there is a substantial amount of money and energy to be saved in such a complete, top-to-bottom overhaul, due to the fact that the present Swiss grid is out-of-date and inefficient. Rather than being perceived as a burden, the process of such “decentralization” should be looked at for what it truly is: an opportunity.

Renovation of the electricity grid would allow for installing new technologies such as the “smart grid”—which uses information and communications technology to collect information about the behavior of suppliers and consumers which is then automatically used to improve the efficiency of the production and distribution of electricity………..

Last but not least, with subsidies and bonuses the electricity producers could be rewarded for making their customers more energy-efficient, which would undoubtedly lead to more efficient products—an approach that the Swiss Federal Council recently approved (Swiss Federal Council, 2012)…..

The outlook ahead

Over the next four decades, Switzerland will face a huge restructuring of its entire energy supply system. The new supply mix will be free from nuclear power, rather low in carbon intensity, and resting upon much higher efficiencies based on the newest and most energy-efficient technologies—along with the development of smart grids, decentralized power suppliers, hydropower, wind power, photovoltaics, biomass, wood, and the rigorous use of burning waste to generate energy whenever materials cannot be recycled. In case of a shortfall of electricity, natural gas-powered, combined heat and power plants may be used as an intermittent alternative………

It is a simple statement of fact that Germany today produces more solar and wind power than the entire projected electricity demand for Switzerland in 2050. What is possible in Germany should be manageable in Switzerland too. ………Conservation, greater efficiencies, alternative energy sources, the smart grid, and the introduction of new technologies mean that Switzerland should be readily able to find ways to replace the energy  lost by the closing of its existing nuclear power plants.     http://bos.sagepub.com/content/71/4/51.full

Batteries bring a revolutionary change – people can control their own electricity source

July 31, 2015

In the end, the solution might lie on a smaller scale: giving everyone the power to store their own power. Tesla is one company of several in this game: it recently announced a device called the Powerwall, designed for homes and businesses. It uses the same batteries as electric cars to store energy, either from renewables or cheap night-time electricity, ready to be used during the day.

If such systems become commonplace, we might all become a little more aware of where our energy is coming from, and how our own behaviour affects its use and production

The battery revolution that will let us all be power brokers, New Scientist 22 July 15 
Companies are racing to find better ways to store electricity – and so provide us with cheaper energy when and where we want it “……..
. Although they are still dwarfed in most respects by the bulky lead-acid batteries found in almost every car on the road today, in 2015, lithium-ion batteries will account for around a third of the money spent on rechargeable batteries globally (see “Turn it on”), and just under a sixth of the total energy stored, according to French research firm Avicenne.

At the same time, their performance has improved immensely: design tweaks have tripled the energy stored in a given volume since the technology was commercialised in 1991. Success has bred success, and lithium-ion batteries have found new and bigger applications, such as electric vehicles (see “Powered by Lithium”). For example, the Model S electric car designed by Tesla Motors, a company owned by serial entrepreneur Elon Musk, is powered by thousands of small lithium-ion batteries arrayed between the car’s axles. It can go from zero to 95 kilometres an hour in 3.1 seconds, and can travel about 430 kilometres on a single charge, although charging it can take many hours.
Tesla has no plans to stop there. Lithium-ion batteries are so important to the company that it has taken manufacturing into its own hands, building a “Gigafactory” just outside Reno, Nevada. By 2020, the company plans to produce as many lithium-ion batteries annually as the entire world produced in 2013 – enough for a fleet of 500,000 electric cars – and with a 30 per cent reduction in production cost per battery………

“Now that lithium-ion is a $15 billion business, big companies are taking notice.”

And it’s not just big companies…………

In the end, the solution might lie on a smaller scale: giving everyone the power to store their own power. Tesla is one company of several in this game: it recently announced a device called the Powerwall, designed for homes and businesses. It uses the same batteries as electric cars to store energy, either from renewables or cheap night-time electricity, ready to be used during the day.

If such systems become commonplace, we might all become a little more aware of where our energy is coming from, and how our own behaviour affects its use and production, says energy researcher Philipp Grünewald of the University of Oxford. “Batteries would be a really helpful thing to give you a sense that you’ve got something you can trade,” he says. He foresees a system where electricity providers put a small battery in customers houses for free, offering them cheaper rates in exchange for being able to manage that slice of energy storage for the good of the grid at large. That, however, would require buy-in from companies and consumers alike.

Chamberlain says it’s hard to predict what changes the world will undergo if the battery revolution comes off – just as the consequences of the information revolution would have been hard to predict a decade or so ago. But he expects a similar empowerment as individuals gain the ability to produce, store and use electricity at will. “Batteries are a linchpin that would enable democratisation of electricity,” he says………..https://www.newscientist.com/article/mg22730312-100-the-battery-revolution-that-will-let-us-all-be-power-brokers/

Britain’s farmers could produce energy faster and better than nuclear reactors could

February 2, 2015
Hinkley Point C – A Review of the Year, nuClear News   Dec 14  “……..Meanwhile a new report from Forum for the Future, Nottingham Trent University and Farmers’ Weekly estimates that UK farms could have a generating capacity of 20GW by 2020 compared with Hinkley’s 3.2GW capacity which won’t be available until 2023 at the very earliest. (30)
Now former Government Chief Scientist, Professor Sir David King who was instrumental in
persuading Tony Blair to ditch the 2003 Energy White Paper, which argued against supporting
nuclear power and go for new reactors now says we might be able to do without them if we can
develop energy storage. (31) He obviously knows a dead horse when he sees one.
On 8th October 2014 following the European Commission’s decision to approve subsidies to
Hinkley, Allan Jeffrey a spokesperson for the Stop Hinkley Campaign appealed to EDF Energy
and the UK Government to examine in detail the flurry of recent reports from investment and
energy analysts predicting a bright future for solar energy and other renewables as well as
energy storage. (32)
“The technology proposed for Hinkley Point C is well past its sell-by-date. It’s time for Somerset to
look to the future and develop a locally-controlled sustainable energy industry which doesn’t
involve leaving a toxic legacy for our grandchildren’s children and which can tackle climate
change and fuel poverty in a much more cost effective way.”
The reports highlighted by the group suggest that the old centralised utility model is becoming
increasingly redundant and decentralised energy supply will become increasingly important in
the future.
Former Labour MP Alan Simpson says the place which scares the Big 6 energy companies  the
most is Germany. Already, 50 per cent of Germany’s electricity generating capacity comes from
renewables. But big energy companies only own about 5 per cent of this generating capacity
95% is owned by farmers, small businesses, local authorities, community co-operatives and
individuals. Overall 50% is owned by citizens. And now local authorities are beginning to take
back control of the grid to help this energy revolution along. (33)