Archive for the ‘– renewables’ Category

In China, wind and solar energy are the clear winners over nuclear.

September 14, 2021

A Decade Of Wind, Solar, & Nuclear In China Shows Clear Scalability Winners
China’s natural experiment in deploying low-carbon energy generation shows that wind and solar are the clear winners.   https://cleantechnica.com/2021/09/05/a-decade-of-wind-solar-nuclear-in-china-shows-clear-scalability-winners/ By Michael Barnard, 6 Sept 21,

Generation in TWh added each year by wind, solar and nuclear in China 2010-2020

My 2014 thesis continues to be supported by the natural experiment being played out in China. In my recent published assessment of small modular nuclear reactors (tl’dr: bad idea, not going to work), it became clear to me that China has fallen into one of the many failure conditions of rapid deployment of nuclear, which is to say an expanding set of technologies instead of a standardized single technology, something that is one of the many reasons why SMRs won’t be deployed in any great numbers.

Wind and solar are going to be the primary providers of low-carbon energy for the coming century, and as we electrify everything, the electrons will be coming mostly from the wind and sun, in an efficient, effective and low-cost energy model that doesn’t pollute or cause global warming. Good news indeed that these technologies are so clearly delivering on their promise to help us deal with the climate crisis. 

In 2014, I made the strong assertion that China’s track record on wind and nuclear generation deployments showed clearly that wind energy was more scalable. In 2019, I returned to the subject, and assessed wind, solar and nuclear total TWh of generation, asserting that wind and solar were outperforming nuclear substantially in total annual generation, and projected that the two renewable forms of generation would be producing 4 times the total TWh of nuclear by 2030 each year between them. Mea culpa: in the 2019 assessment, I overstated the experienced capacity factor for wind generation in China, which still lags US experiences, but has improved substantially in the past few years.


My thesis on scalability of deployment has remained unchanged: the massive numerical economies of scale for manufacturing and distributing wind and solar components, combined with the massive parallelization of construction that is possible with those technologies, will always make them faster and easier to scale in capacity and generation than the megaprojects of GW-scale nuclear plants. This was obvious in 2014, it was obviously true in 2019, and it remains clearly demonstrable today. Further, my point was that China was the perfect natural experiment for this assessment, as it was treating both deployments as national strategies (an absolute condition of success for nuclear) and had the ability and will to override local regulations and any NIMBYism. No other country could be used to easily assess which technologies could be deployed more quickly.

In March of this year I was giving the WWEA USA+Canada wind energy update as part of WWEA’s regular round-the-world presentation by industry analysts in the different geographies. My report was unsurprising. In 2020’s update, the focus had been on what the impact of COVID-19 would be on wind deployments around the world. My update focused on the much greater focus on the force majeure portions of wind construction contracts, and I expected that Canada and the USA would miss expectations substantially. The story was much the same in other geographies. And that was true for Canada, the USA and most of the rest of the geographies.

But China surprised the world in 2020, deploying not only 72 GW of wind energy, vastly more than expected, but also 48 GW of solar capacity. The wind deployment was a Chinese and global record for a single country, and the solar deployment was over 50% more than the previous year. Meanwhile, exactly zero nuclear reactors were commissioned in 2020.

And so, I return to my analysis of Chinese low-carbon energy deployment, looking at installed capacity and annual added extra generation.

Grid-connections of nameplate capacity of wind, solar and nuclear in China 2010-2020 chart by author
(more…)

Reaching net zero without nuclear

September 14, 2021

Our latest Talking Points makes the case

Not only is it possible, it’s essential   https://beyondnuclearinternational.org/2021/07/11/reaching-net-zero-without-nuclear/

The fourth in our series of Talking Points draws on the new report by Jonathon Porritt, New Zero Without Nuclear: The Case Against Nuclear Power. Given the far-off illusory promise of new reactor designs; the enormous costs; the limited capacity for carbon reductions compared to renewables; the unsolved waste problem; and the inflexibility and outdatedness of the “always on” baseload model, nuclear power is in the way of — rather than a contributor to — climate mitigation. You can download the Net Zero Without Nuclear Talking Points here. This is the fourth in our series. You can find all four here.

By Jonathon Porritt 10 July 21

 I first took an interest in Greenpeace back in 1973, before I joined Friends of the Earth, CND and the Green Party (then the Ecology Party) a year later. I’d followed the campaigns against the testing of nuclear weapons in Amchitka (one of the Aleutian islands in Alaska), and then in the French nuclear testing area of Moruroa in the Pacific. I was 23 at the time, with zero in-depth knowledge, but it just seemed wrong, on so many different fronts.

That early history of Greenpeace seems much less relevant now, given all its achievements over the last 50 years in so many other areas of critical environmental concern. But it still matters. Greenpeace has been an ‘anti-nuclear organisation’ through all that time, sometimes fiercely engaged in front-line battles, sometimes maintaining more of a watching brief, and nuclear power plays no part in Greenpeace’s modelling of a rapid transition to a Net Zero carbon world. It’s been very supportive of my new report, ‘Net Zero Without Nuclear’.

I wrote this report partly because the nuclear industry itself is in full-on propaganda mode, and partly because that small caucus of pro-nuclear greens (that’s existed for as long as I can remember) seems to be winning new supporters.

And I can see why. The Net Zero journey we’re now starting out on for real (at long last!) is by far the most daunting challenge that humankind has ever faced. Writing in the Los Angeles Review of Books in June 2019, author and Army veteran Roy Scranton put it like this:

‘Climate change is bigger than the New Deal, bigger than the Marshall Plan, bigger than World War II, bigger than racism, sexism, inequality, slavery, the Holocaust, the end of nature, the Sixth Extinction, famine, war, and plague all put together, because the chaos it’s bringing is going to supercharge every other problem. Successfully meeting this crisis would require an abrupt, traumatic revolution in global human society; failing to meet it will be even worse.’

Not many people see it like that – as yet. But more and more will, as signals of that kind of chaos start to multiply. And we already know that the kind of radical decarbonisation on which our future depends is going to be incredibly hard. So why should we reject a potentially powerful contribution to that decarbonisation challenge?

I became Director of Friends of the Earth in 1984. The same year that my first book, ‘Seeing Green’, was published. Looking back on what I said then, I was indeed fiercely critical of nuclear power, but have to admit that my advocacy of renewables (as the principal alternative) was somewhat muted. Apart from a few visionaries in the early 1980s (including Friends of the Earth’s Amory Lovins and Walt Patterson), no-one really thought that renewables would be capable of substituting for the use of all fossil fuels and all nuclear at any point in the near future. And anyone expressing such a view in official circles was rapidly put back in their box.

Given the scale of the challenge we face, we need to have very strong grounds for keeping nuclear out of today’s low/zero-carbon portfolio. Not least as nuclear power, historically, has already made a huge contribution to low-carbon generation. Since the early 1960s, nuclear power has provided the equivalent of 18,000 reactor years of electricity generation. We’d be in a much worse place today if all that electricity had been generated from burning coal or gas.

Happily, there is no longer any doubt about the viability of that alternative. In 2020, Stanford University issued a collection of 56 peer-reviewed journal articles, from 18 independent research groups, supporting the idea that all the energy required for electricity, transport, heating and cooling, and all industrial purposes, can be supplied reliably with 100% (or near 100%) renewable energy. The solutions involve transitioning ASAP to 100% renewable wind – water – solar (WWS), efficiency and storage.

The transition is already happening. To date, 11 countries have reached or exceeded 100% renewable electricity. And a further 12 countries are intent on reaching that threshold by 2030. In the UK, the Association for Renewable Energy and Clean Technology says we can reach 100% renewable electricity by 2032. Last year, we crossed the 40% threshold.

There is of course a world of difference between electricity and total energy consumption. But at the end of April, Carbon Tracker brought out its latest analysis of the potential for renewables, convincingly explaining why solar and wind alone could meet total world energy demand 100 times over by 2050, and that fears about the huge amount of land this would require are unfounded. The land required for solar panels to provide all global energy would be 450,000 km2, just 0.3% of global land area – significantly less than the current land footprint of fossil fuel infrastructures. As the Report says:

The technical and economic barriers have been crossed and the only impediment to change is political. Sector by sector and country by country the fossil fuel incumbency is being swamped by the rapidly rising tide of new energy technologies. Even countries where the technical potential is below 10 times energy demand. . . have devised innovative approaches to energy generation.

The fossil fuel industry cannot compete with the technology learning curves of renewables, so demand will inevitably fall as wind and solar continue to grow. At the current 15-20% growth rates of solar and wind, fossil fuels will be pushed out of the electricity sector by the mid-2030s and out of total energy supply by 2050.‘

The unlocking of energy reserves 100 times our current demand creates new possibilities for cheaper energy and more local jobs in a more equitable world with far less environmental stress.‘

Poor countries are the greatest beneficiaries. They have the largest ratio of solar and wind potential to energy demand and stand to unlock huge domestic benefits.’

Nuclear plays no part in any of these projections, whether we’re talking big reactors or small reactors, fission or fusion. The simple truth is this: we should see nuclear as another 20th century technology, with an ever-diminishing role through into the 21st century, incapable of overcoming its inherent problems of cost, construction delay, nuclear waste, decommissioning, security (both physical and cyber), let alone the small but still highly material risk of catastrophic accidents like Chernobyl and Fukushima. My ‘Net Zero Without Nuclear’ report goes into all these inherent problems in some detail.

So why are the UK’s politicians (in all three major parties) still in thrall to this superannuated technology? It’s here we have to go back to Amchitka! Some environmentalists may still be taken aback to discover that the Government’s principal case for nuclear power in the UK today is driven by the need to maintain the UK’s nuclear weapons capability – to ensure a ‘talent pool’ of nuclear engineers and to support a supply chain of engineering companies capable of providing component parts for the nuclear industry, both civilian and military. The indefatigable work of Andy Stirling and Phil Johnston at Sussex University’s Science Policy Research Unit has established the depth and intensity of these interdependencies, demonstrating how the UK’s military industrial base would become unaffordable in the absence of a nuclear energy programme.

What that means is that today’s pro-nuclear greens are throwing in their lot not just with a bottomless pit of hype and fantasy, but with a world still dangerously at risk from that continuing dependence on nuclear weapons. That’s a weird place to be, 50 years on from the emergence of Greenpeace as a force for good in that world.

Solar sails for space voyages

February 18, 2021

Nuclear Rockets to Mars?, BY KARL GROSSMAN– CounterPunch, 16 Feb 21,”………. As for rocket propulsion in the vacuum of space, it doesn’t take much conventional chemical propulsion to move a spacecraft—and fast.

And there was a comprehensive story in New Scientist magazine this past October on “The new age of sail,” as it was headlined. The subhead: “We are on the cusp of a new type of space travel that can take us to places no rocket could ever visit.”

The article began by relating 17th Century astronomer Johanne Kepler observing comets and seeing “that their tails always pointed away from the sun, no matter which direction they were traveling. To Kepler, it meant only one thing: the comet tails were being blown from the sun.”

Indeed, “the sun produces a wind in space” and “it can be harnessed,” said the piece. “First, there are particles of light streaming from the sun constantly, each carrying a tiny bit of momentum. Second, there is a flow of charged particles, mostly protons and electrons, also moving outwards from the sun. We call the charged particles the solar wind, but both streams are blowing a gale”—that’s in the vacuum of space.

Japan launched its Ikaros spacecraft in 2010—sailing in space using the energy from the sun. The LightSail 2 mission of The Planetary Society was launched in 2019—and it’s still up in space, flying with the sun’s energy.

New systems using solar power are being developed – past the current use of thin-film such as Mylar for solar sails.

The New Scientist article spoke of scientists “who want to use these new techniques to set a course for worlds currently far beyond our reach—namely the planets orbiting our nearest star, Alpha Centauri.”……. more https://www.counterpunch.org/2021/02/16/nuclear-rockets-to-mars/

India’s nuclear power programme unlikely to progress. Ocean energy is a better way.

August 18, 2019

The problem is apparently nervousness about handling liquid Sodium, used as a coolant. If Sodium comes in contact with water it will explode; and the PFBR is being built on the humid coast of Tamil Nadu. The PFBR has always been a project that would go on stream “next year”. The PFBR has to come online, then more FBRs would need to be built, they should then operate for 30-40 years, and only then would begin the coveted ‘Thorium cycle’!

Why nuclear when India has an ‘ocean’ of energy,  https://www.thehindu.com/business/Industry/why-nuclear-when-india-has-an-ocean-of-energy/article28230036.ece

M. Ramesh – 30 June 19 Though the ‘highly harmful’ source is regarded as saviour on certain counts, the country has a better option under the seas

If it is right that nothing can stop an idea whose time has come, it must be true the other way too — nothing can hold back an idea whose time has passed.

Just blow the dust off, you’ll see the writing on the wall: nuclear energy is fast running out of sand, at least in India. And there is something that is waiting to take its place.

India’s 6,780 MW of nuclear power plants contributed to less than 3% of the country’s electricity generation, which will come down as other sources will generate more.

Perhaps India lost its nuclear game in 1970, when it refused to sign – even if with the best of reasons – the Non Proliferation Treaty, which left the country to bootstrap itself into nuclear energy. Only there never was enough strap in the boot to do so.

In the 1950s, the legendary physicist Dr. Homi Bhabha gave the country a roadmap for the development of nuclear energy.

Three-stage programme

In the now-famous ‘three-stage nuclear programme’, the roadmap laid out what needs to be done to eventually use the country’s almost inexhaustible Thorium resources. The first stage would see the creation of a fleet of ‘pressurised heavy water reactors’, which use scarce Uranium to produce some Plutonium. The second stage would see the setting up of several ‘fast breeder reactors’ (FBRs). These FBRs would use a mixture of Plutonium and the reprocessed ‘spent Uranium from the first stage, to produce energy and more Plutonium (hence ‘breeder’), because the Uranium would transmute into Plutonium. Alongside, the reactors would convert some of the Thorium into Uranium-233, which can also be used to produce energy. After 3-4 decades of operation, the FBRs would have produced enough Plutonium for use in the ‘third stage’. In this stage, Uranium-233 would be used in specially-designed reactors to produce energy and convert more Thorium into Uranium-233 —you can keep adding Thorium endlessly.

Seventy years down the line, India is still stuck in the first stage. For the second stage, you need the fast breeder reactors. A Prototype Fast Breeder Reactor (PFBR) of 500 MW capacity, construction of which began way back in 2004, is yet to come on stream.

The problem is apparently nervousness about handling liquid Sodium, used as a coolant. If Sodium comes in contact with water it will explode; and the PFBR is being built on the humid coast of Tamil Nadu. The PFBR has always been a project that would go on stream “next year”. The PFBR has to come online, then more FBRs would need to be built, they should then operate for 30-40 years, and only then would begin the coveted ‘Thorium cycle’! Nor is much capacity coming under the current, ‘first stage’. The 6,700 MW of plants under construction would, some day, add to the existing nuclear capacity of 6,780 MW. The government has sanctioned another 9,000 MW and there is no knowing when work on them will begin. These are the home-grown plants. Of course, thanks to the famous 2005 ‘Indo-U.S. nuclear deal’, there are plans for more projects with imported reactors, but a 2010 Indian ‘nuclear liability’ legislation has scared the foreigners away. With all this, it is difficult to see India’s nuclear capacity going beyond 20,000 MW over the next two decades.

Now, the question is, is nuclear energy worth it all?

There have been three arguments in favour of nuclear enFor Fergy: clean, cheap and can provide electricity 24×7 (base load). Clean it is, assuming that you could take care of the ticklish issue of putting away the highly harmful spent fuel.

But cheap, it no longer is. The average cost of electricity produced by the existing 22 reactors in the country is around ₹2.80 a kWhr, but the new plants, which cost ₹15-20 crore per MW to set up, will produce energy that cannot be sold commercially below at least ₹7 a unit. Nuclear power is pricing itself out of the market. A nuclear power plant takes a decade to come up, who knows where the cost will end up when it begins generation of electricity?

Nuclear plants can provide the ‘base load’ — they give a steady stream of electricity day and night, just like coal or gas plants. Wind and solar power plants produce energy much cheaper, but their power supply is irregular. With gas not available and coal on its way out due to reasons of cost and global warming concerns, nuclear is sometimes regarded as the saviour. But we don’t need that saviour any more; there is a now a better option.

Ocean energy

The seas are literally throbbing with energy. There are at least several sources of energy in the seas. One is the bobbing motion of the waters, or ocean swells — you can place a flat surface on the waters, with a mechanical arm attached to it, and it becomes a pump that can be used to drive water or compressed air through a turbine to produce electricity. Another is by tapping into tides, which flow during one part of the day and ebb in another. You can generate electricity by channelling the tide and place a series of turbines in its path. One more way is to keep turbines on the sea bed at places where there is a current — a river within the sea. Yet another way is to get the waves dash against pistons in, say, a pipe, so as to compress air at the other end. Sea water is dense and heavy, when it moves it can punch hard — and, it never stops moving.

All these methods have been tried in pilot plants in several parts of the world—Brazil, Denmark, U.K., Korea. There are only two commercial plants in the world—in France and Korea—but then ocean energy has engaged the world’s attention.

For sure, ocean energy is costly today.

India’s Gujarat State Power Corporation had a tie-up with U.K.’s Atlantic Resources for a 50 MW tidal project in the Gulf of Kutch, but the project was given up after they discovered they could sell the electricity only at ₹13 a kWhr. But then, even solar cost ₹18 a unit in 2009! When technology improves and scale-effect kicks-in, ocean energy will look real friendly.

Initially, ocean energy would need to be incentivised, as solar was. Where do you find the money for the incentives? By paring allocations to the Department of Atomic Energy, which got ₹13,971 crore for 2019-20.

Also, wind and solar now stand on their own legs and those subsidies could now be given to ocean energy.

How our electricity system of the future could be powered by sun, wind and waves

April 7, 2019

Our electricity system of the future could be powered by sun, wind and waves @nickymison

Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’

November 3, 2018

Science Direct 18 May 18 

Scientists refute Ben Heard’s paper opposing reneweable energy

November 3, 2018

Can we get 100 percent of our energy from renewable sources? https://www.eurekalert.org/pub_releases/2018-05/luot-cwg051718.php New article gathers the evidence to address the sceptics LAPPEENRANTA UNIVERSITY OF TECHNOLOGY 

Is there enough space for all the wind turbines and solar panels to provide all our energy needs? What happens when the sun doesn’t shine and the wind doesn’t blow? Won’t renewables destabilise the grid and cause blackouts?

In a review paper last year in the high-ranking journal Renewable and Sustainable Energy Reviews, Master of Science Benjamin Heard (at left) and colleagues presented their case against 100% renewable electricity systems. They doubted the feasibility of many of the recent scenarios for high shares of renewable energy, questioning everything from whether renewables-based systems can survive extreme weather events with low sun and low wind, to the ability to keep the grid stable with so much variable generation.

Now scientists have hit back with their response to the points raised by Heard and colleagues.The researchers from the Karlsruhe Institute of Technology, the South African Council for Scientific and Industrial Research, Lappeenranta University of Technology, Delft University of Technology and Aalborg University have analysed hundreds of studies from across the scientific literature to answer each of the apparent issues. They demonstrate that there are no roadblocks on the way to a 100% renewable future.

“While several of the issues raised by the Heard paper are important, you have to realise that there are technical solutions to all the points they raised, using today’s technology,” says the lead author of the response, Dr. Tom Brown of the Karlsruhe Institute of Technology.

“Furthermore, these solutions are absolutely affordable, especially given the sinking costs of wind and solar power,” says Professor Christian Breyer of Lappeenranta University of Technology, who co-authored the response.

Brown cites the worst-case solution of hydrogen or synthetic gas produced with renewable electricity for times when imports, hydroelectricity, batteries, and other storage fail to bridge the gap during low wind and solar periods during the winter. For maintaining stability there is a series of technical solutions, from rotating grid stabilisers to newer electronics-based solutions. The scientists have collected examples of best practice by grid operators from across the world, from Denmark to Tasmania.

The response by the scientists has now appeared in the same journal as the original article by Heard and colleagues.

“There are some persistent myths that 100% renewable systems are not possible,” says Professor Brian Vad Mathiesen of Aalborg University, who is a co-author of the response.

“Our contribution deals with these myths one-by-one, using all the latest research. Now let’s get back to the business of modelling low-cost scenarios to eliminate fossil fuels from our energy system, so we can tackle the climate and health challenges they pose.”

For more information, please contact:

Tom Brown, Young Investigator Group Leader, Karlsruhe Institute of Technology | tom.brown@kit.edu

Kornelis Blok, Professor, Delft University of Technology | k.blok@tudelft.nl

Christian Breyer, Professor, Lappeenranta University of Technology | christian.breyer@lut.fi

Brian Vad Mathiesen, Professor, Aalborg University | bvm@plan.aau.dk

The research papers for further information:

T.W. Brown, T. Bischof-Niemz, K. Blok, C. Breyer, H. Lund, B.V. Mathiesen, “Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’,” Renewable and Sustainable Energy Reviews, DOI:10.1016/j.rser.2018.04.113, 2018.

B.P. Heard, B.W. Brook, T.M.L. Wigley, C.J.A. Bradshaw, “Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems,” Renewable and Sustainable Energy Reviews, DOI:10.1016/j.rser.2017.03.114, 2017.

https://doi.org/10.1016/j.rser.2017.03.114

Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’

October 9, 2018

Science Direct 18 May 18 

Solar energy: greenhouse emissions becoming lower – will be very low by 2018

February 1, 2017

How clean is solar power? http://www.economist.com/news/science-and-technology/21711301-new-paper-may-have-answer-how-clean-solar-power?fsrc=scn%2Ffb%2Fte%2Fbl%2Fed%2Fhowcleanissolarpower

A new paper may have the answer

Dec 10th 2016 THAT solar panels do not emit greenhouse gases such as carbon dioxide when they are generating electricity is without question. This is why they are beloved of many who worry about the climate-altering potential of such gases. Sceptics, though, observe that a lot of energy is needed to make a solar panel in the first place. In particular, melting and purifying the silicon that these panels employ to capture and transduce sunlight needs a lot of heat. Silicon’s melting point, 1,414°C, is only 124°C less than that of iron.

Silicon is melted in electric furnaces and, at the moment, most electricity is produced by burning fossil fuels. That does emit carbon dioxide. So, when a new solar panel is put to work it starts with a “carbon debt” that, from a greenhouse-gas-saving point of view, has to be paid back before that panel becomes part of the solution, rather than part of the problem. Observing this, some sceptics have gone so far as to suggest that if the motive for installing solar panels is environmental (which is often, though not always, the case), they are pretty-much useless.

 Wilfried van Sark, of Utrecht University in the Netherlands, and his colleagues have therefore tried to put some numbers into the argument. As they report in Nature Communications, they have calculated the energy required to make all of the solar panels installed around the world between 1975 and 2015, and the carbon-dioxide emissions associated with producing that energy. They also looked at the energy these panels have produced since their installation and the corresponding amount of carbon dioxide they have prevented from being spewed into the atmosphere. Others have done life-cycle assessments for solar power in the past. None, though, has accounted for the fact that the process of making the panels has become more efficient over the course of time. Dr Van Sark’s study factors this in.

Panel games  To estimate the number of solar panels installed around the world, Dr Van Sark and his team used data from the International Energy Agency, an autonomous intergovernmental body. They gleaned information on the amount of energy required to make panels from dozens of published studies. Exactly how much carbon dioxide was emitted during the manufacture of a panel will depend on where it was made, as well as when. How much emitted gas it has saved will depend on where it is installed. A panel made in China, for example, costs nearly double the greenhouse-gas emissions of one made in Europe. That is because China relies more on fossil fuels for generating power. Conversely, the environmental benefits of installing solar panels will be greater in China than in Europe, as the clean power they produce replaces electricity that would otherwise be generated largely by burning coal or gas.

Once the team accounted for all this, they found that solar panels made today are responsible, on average, for around 20 grams of carbon dioxide per kilowatt-hour of energy they produce over their lifetime (estimated as 30 years, regardless of when a panel was manufactured). That is down from 400-500 grams in 1975. Likewise, the amount of time needed for a solar panel to produce as much energy as was involved in its creation has fallen from about 20 years to two years or less. As more panels are made, the manufacturing process becomes more efficient. The team found that for every doubling of the world’s solar capacity, the energy required to make a panel fell by around 12% and associated carbon-dioxide emissions by 17-24%.

The consequence of all this number-crunching is not as clear-cut as environmentalists might hope. Depending on the numbers fed into the model, global break-even could have come as early as 1997, or might still not have arrived. But if it has not, then under even the most pessimistic assumptions possible it will do so in 2018. After that, solar energy’s environmental credentials really will be spotless.

Solar energy powers South Australia’s desert Sundrop Farms

November 21, 2016

Desert farm grows 180,000 tomato plants using only sun and seawater http://www.mnn.com/your-home/organic-farming-gardening/stories/desert-farm-grows-180000-tomato-plants-using-only-sun-and-seawater

Farms that grow food in arid deserts, without groundwater or fossil fuels, could be the future of agriculture. BRYAN NELSON October 10, 2016, No soil, no pesticides, no fossil fuels, and no groundwater. And yet, a thriving farm in the heart of the arid Australian desert. How is this possible?

An international team of scientists has spent the last six years fine-tuning a system that pipes seawater in from the ocean and desalinates it using a state-of-the-art concentrated solar energy plant. The water is then used to irrigate 180,000 tomato plants grown in coconut husks instead of soil, kept in a network of greenhouses.

The result is Sundrop Farms, a commercial-scale facility located just off the Spencer Gulf in South Australia that began construction in 2014. Today it’s producing an estimated 17,000 tons of tomatoes per year to be sold in Australian supermarkets.

Given the increasing demand for fresh water around the world — a problem that’s particularly apparent in the sunburned landscape of South Australia — this might just represent future of large-scale farming, especially in coastal desert regions that have previously been non-arable.

The heart of the farm is the 23,000 mirrors that reflect sunlight towards a 115-meter high receiver tower. All of that concentrated sunlight produces an immense amount of power, up to 39 megawatts. That’s more than enough to cover the desalination needs of the farm and supply all the electricity needs of the greenhouses.

The seawater, too, has other purposes besides just irrigation. During scorching hot summers, seawater-soaked cardboard lines the greenhouses to help keep the plants at optimal temperature. Seawater also has the remarkable effect of sterilizing the air, meaning that chemical pesticides are unnecessary.

All in all, the facility cost around 200 million dollars to get up and running. That might sound excessive, but in the long run the facility should save money compared to the costs of conventional greenhouses that require fossil fuels for power. It’s a self-sustaining, cost-efficient design so long as the initial investment can be provided. Facilities similar to the Australian one are already being planned for Portugal and the U.S., as well as another in Australia. Desert areas like those seen in Oman, Qatar and the United Arab Emirates could be next in line.

“These closed production systems are very clever,” said Robert Park of the University of Sydney, Australia, to New Scientist. “I believe that systems using renewable energy sources will become better and better and increase in the future, contributing even more of some of our foods.”