Archive for the ‘– oceans’ Category

Ignoring the danger of ionising radiation: nuclear waste dumping in the sea

March 31, 2018

The idea that nuclear pollution can be rendered safe by extreme dilution has been proven wrong

radioactive materials bioaccumulate. A worm can contain 2,000 to 3,000 times higher levels than its environment. The worm is then eaten by another marine animal, which gets eating by another, and so on. At each step, the radioactive level rises. Barbey has identified reproductive defects in sea crabs, caused by radioactive contamination, and these genetic defects are passed on to future generations of crabs.

Are we to believe the same is not happening in humans, who are at the top of the food chain?

The fact of the matter is that a certain number of cancer deaths are considered acceptable in order to keep costs for the nuclear waste industry down. The question no one has the answer to is: At what point do the deaths begin to outweigh the cost-savings of the nuclear industry?

As to where such cost-benefit considerations came from in the first place, the filmmakers identify the International Commission on Radiological Protection (ICRP)

the nuclear industry is hardly operating for the benefit of the many.

The Rarely Discussed Reality of Radioactive Pollution

Story at-a-glance

  • For decades, the common method of nuclear disposal was to dump plutonium-filled steel barrels into the ocean. Today, many if not most of these barrels have corroded and disintegrated, releasing radioactive material into the environment
  • “Versenkt und Vergessen” (Sunk and Forgotten) investigates what happened to the barrels of nuclear waste, and how radioactive material is disposed of today
  • In 1993, nuclear waste dumping into the ocean was banned worldwide, yet the ocean remains a primary dumping ground for radioactive waste
  • Instead of ditching barrels overboard, the nuclear waste industry built pipes along the bottom of the sea, through which the radioactive material is discharged directly into the open sea
  • Cancer deaths are considered acceptable to keep costs for the nuclear waste industry down. According to the International Commission on Radiological Protection, this cost-benefit consideration is part of Epicurus’ utilitarian ethics, which states that the needs of the many outweigh the needs of the few

By Dr. Mercola

A rarely addressed environmental problem is radioactive pollution from nuclear waste disposal. For decades, the common method of nuclear disposal was to simply dump plutonium-filled steel barrels into the ocean.

Starting with an overview of the past, the featured documentary, “Versenkt und Vergessen,” (Sunk and Forgotten), notes that in May 1967, 100,000 tons of nuclear waste from Germany, Great Britain and France were dumped in the North Atlantic, the Irish Sea and the English Channel. And that was just one of many loads.

Officials claimed the waste would be safely diluted at depths of about 4,000 meters (2.5 miles). The motto was: “The solution to pollution is dilution.” But was it? The film crew investigates what happened to these barrels of nuclear waste, and how radioactive material is disposed of today, now that ocean dumping is no longer allowed.

1970s Activism Raised Awareness but Could Not Stop Nuclear Dumping

Greenpeace began raising public awareness about the practice of dumping nuclear waste in the ocean during the 1970s. Alas, the nuclear industry remained unfazed. Instead, environmentalists were attacked and criminalized. John Large, a nuclear physicist who was involved in the development of a British nuclear bomb in the 1960s, knows a thing or two about nuclear dumping.

In addition to barrels filled with plutonium, nuclear reactor fuel rods were also routinely dumped into the ocean. And, while specific sites had been chosen for the disposal, there are no guarantees the rods or barrels actually made it there.

The reason for this is because the ship’s crew were continually exposed to radioactivity as long as the rods remained onboard. This meant the captain had to pay careful attention to exposure times to protect the health of the crew, and if they ran into bad weather, the cargo would have to be dumped wherever they happened to be when the clock ran out.

Dumping Inventory Records Tell Us Little

In addition to that, many entries in the disposal inventory records simply read, “not known,” when it comes to the amount, content or location of the disposal. With such an apparent lack of precision in the dumping inventory records, how might the fate of the barrels and fuel rods be ascertained?

The filmmakers turn to the British Health Protection Agency (HPA), which is responsible for radioactive waste. Alas, they have little choice but to rely on the information they’re given, no matter how incomplete. Michael Meacher MP, who was Minister for the Environment between 1997 and 2003 and an opponent of the nuclear dumping policy, believes the lack of record keeping is no accident.

He suggests it was probably an agreement between the British ministry of defense, the Army and the nuclear industry — none of which really wanted anyone to know how much was dumped, what kind of materials were disposed of or exactly where. The less information anyone has, the lower the chances of any of them being held responsible. “This is a sort of conspiracy,” Meacher says, adding that the long-term effects of dumping radioactive waste into oceans are entirely unknown.

Fundamental Assumptions Proven Wrong

The idea that nuclear pollution can be rendered safe by extreme dilution has been proven wrong. As noted by Large, “The fundamental underlying problem was that they assumed that if you dilute the radioactivity with tons and tons of water, it’s safe to discharge. And that has been proven wrong time and time again.” Evidence of this was collected by a German research group in the mid-‘80s.

The exploratory group visited nuclear dumping sites in the Atlantic where they retrieved several barrels, and found plutonium in the water, seabed and fish. An internal document titled “Position paper on the implications of deep sea disposal of radioactive waste,” issued by the International Atomic Energy Agency (IAEA), notes that “Increased concentrations of plutonium in the dump sites indicates plutonium leaks from the barrels.”

Now these toxins have dispersed into the biosphere, and dispersion does not equate to safety. At its headquarters in Monaco, IAEA scientists are conducting experiments to assess the impact of radioactive waste on marine life by feeding marine animals with contaminated food sources. The IAEA, which continuously monitors the ocean floor, claims it has not found any other dumped barrels. The assumption, therefore, is that the barrels ditched in the English Channel have all disintegrated.

Nuclear Waste in the English Channel

There have been no additional investigations at the dumpsites since, however, so is the IAEA correct in its assumption that all dumped barrels have corroded and no longer retrievable? The film crew decides to conduct its own investigation, and travels to an area called Hurd Deep, located in the English Channel near the island of Alderney, where 28,000 barrels of radioactive waste and munitions is known to have been deposited at a depth of 100 meters (328 feet) or less.

With the use of a small unmanned submarine, the team surveils the area. What do they find? On the very first dive, the camera-equipped submersible documents a still undamaged barrel, which could potentially be salvaged. On the second dive, a thoroughly corroded and disintegrating barrel is found — barely half an hour’s boat ride from the coast of France.

With nuclear waste dumped so close to land, what effects might it have on the environment and residents? The team follows professor Chris Busby to Alderney, where a doctor has reported an unusually high number of cancer cases and deaths. Unfortunately, exact statistics on cancer deaths cannot be obtained due to data protection protocols.

Based on informal inquiries, however, the team finds that the island, which has a total of just 2,400 residents, has had quite a few cancer-related deaths. The government, however, assures Busby that everything is fine, and that levels of radioactivity in the environment are far too low to cause harm. According to the IAEA, the dilution hypothesis does work, and despite very large amounts of radioactive waste having been deposited in some areas, the water would still meet safe drinking water standards, were it not saltwater.

Busby disagrees, as does Claus Grupen, a nuclear physicist at the University of Siegen in Germany, who says, “If the amount in which [the radioactive waste] is diluted is infinitely vast — if I discharge it into outer space — then it might be well-diluted. But the Earth is a very small body, and the concentration is growing.” The conclusion is that the radiation is merely spreading out. It’s not actually “disappearing” at all, and according to Busby, every single radionucleotide has the potential to trigger cancer.

Nuclear Ocean Dumping Continues

In 1993, nuclear waste dumping was banned worldwide, in large part thanks to the ongoing efforts of Greenpeace. But that doesn’t mean the practice has stopped. The nuclear industry has merely changed the way it’s doing the dumping. Instead of ditching barrels overboard, the industry built pipes along the bottom of the sea, through which the radioactive material is pumped. To where, you might ask? Directly into the open sea.

One of these nuclear waste pipes is situated in La Hague, Normandy, where physicist David Boilley has founded an environmental group against nuclear ocean dumping. In his view, the nuclear accident in Fukushima has had global ramifications, forcing us to rethink how we view “clean food.” It’s no longer possible to assume that clean water equals clean and healthy fish.

A fish may ultimately be caught in water considered clean, but if that individual fish has, at any point in its life, swum through a contaminated area or eaten contaminated food, it will be contaminated to some degree. So being caught in clean water is no guarantee that it will be free of radioactive contaminants. “It’s like gambling,” Boilley says. “You may be lucky or unlucky.”

Back in Boilley’s lab, water samples prove to have tritium levels that are fivefold higher than those provided by the French nuclear operator Areva. This is why the group, and other environmentalists, refuse to rely on “official” measurements, and insist on taking their own. Fish and shellfish bought at the local market are also tested, as are other marine animals found on the ocean floor.

Microbiologist Pierre Barbey explains that radioactive materials bioaccumulate. A worm can contain 2,000 to 3,000 times higher levels than its environment. The worm is then eaten by another marine animal, which gets eating by another, and so on. At each step, the radioactive level rises. Barbey has identified reproductive defects in sea crabs, caused by radioactive contamination, and these genetic defects are passed on to future generations of crabs.

Are we to believe the same is not happening in humans, who are at the top of the food chain? According to Barbey, the cellular impact is the same. Plutonium has been found in gray seals off the coasts of Europe, and cesium has been found in porpoises. Since the ecosystem is a closed system, every animal must be protected from radioactivity. None is “disposable.” And what happens to the animals will ultimately affect us too.

Why Ocean Dumping Continues Despite Ban

Next, the team visits Sellafield, home of 80 percent of the U.K.’s nuclear waste. This site also has waste pipes dumping radioactive materials into the ocean. In 1997, Greenpeace activists drew attention to the pipe. One of the activists was Shaun Burnie, who to this day continues his fight against the nuclear discharges. He’s particularly concerned about the health and welfare of the locals, especially those who live right on the beach.

Their homes have been found to contain plutonium-contaminated dust, and tests reveal these high-risk individuals have higher levels of radioactivity in their bodies. They even have plutonium in their teeth. Radioactive material originating from Sellafield has also been found along the coast of Norway. But how is it that the nuclear industry can continue disposing of radioactive waste into the ocean when ocean dumping has been banned?

The answer may surprise you. The industry claims the pipes are part of a land-based disposal system, and therefore legal. When asked if there’s a scientific, logical reason why barrels are banned while open discharges into the ocean are allowed, Hartmut Nies with the IAEA replies, “I think it is more of a philosophical question.”

Wolfgang Renneberg, an expert on radioactive waste disposal and director general for nuclear safety in the German Federal Ministry for Environment, Nature Conservation and Nuclear Safety, offers a more definitive answer: There’s only one reason why open discharges are allowed, and that is economics. To install a system to ensure discharges have a near-zero radioactivity would likely be so expensive, it would likely render the plant economically unviable.

Rising Childhood Leukemia Rates Dismissed

So, despite reports of rising rates of leukemia in Sellafield — which, according to Busby are 10 times higher than the rest of the country — the discharges continue. And, since investigations into cancer clusters keep finding the nuclear operation at Sellafield is not a factor, plutonium-contaminated beaches remain open to the public.

Many locals have come to suspect the authorities are being “deliberately imprecise in their work” to hide the extent of the problem. In an area of the beach where official soil testing has not been done, the filmmakers find plutonium levels up to 10 times higher than the permissible limit. Still, some nuclear industry experts insist the dangers associated with radioactive material is small. One 30-year veteran in the industry, Richard Wakeford, says:

“I assess the risk of radiation … to be very small, and should really not be a major [concern] to parents or anyone else. There are much more important things to be worried about. There are two major ideas: Either childhood leukemia is a rare response to a common, but as of yet unidentified, infection, or [it’s due to] large-scale urban, rural population mixing.”

As noted in the film, “Conclusion: Either a virus or population mixing around Sellafield is responsible for cancer — but not the highly toxic nuclear waste from the sea?!” The team turns to another expert, the German physician Klaus Hoffmann, member of a number of German federal radiation protection committees. When asked what he thinks about the U.K’s denial of a link between rising leukemia rates and radioactive pollution, he says:

“They are simply wrong. There is little evidence for the population mixing hypothesis, and there’s absolutely no evidence of the virus hypothesis. There is neither a virus, nor are there antibodies. In other words, forget this whole infection hypothesis. These hypotheses have arisen primarily to explain away any risk from radiation.”     

Industry Cost-Savings Weighed Against Human Life

The fact of the matter is that a certain number of cancer deaths are considered acceptable in order to keep costs for the nuclear waste industry down. The question no one has the answer to is: At what point do the deaths begin to outweigh the cost-savings of the nuclear industry?

As to where such cost-benefit considerations came from in the first place, the filmmakers identify the International Commission on Radiological Protection (ICRP) — an independent charity “established to advance for the public benefit the science of radiological protection, in particular by providing recommendations and guidance on all aspects of protection against ionizing radiation.”

While interview requests with the Commission went unanswered, they discovered a video online in which former ICRP chairman Roger Clarke explains the cost-benefit principle by quoting one of Epicurus’ utilitarian ethics, which states that, “The needs of the many outweigh the needs of the few.”

In this case, you could argue the nuclear industry is hardly operating for the benefit of the many. If the true costs of operations were considered, it would become clear that there are far less expensive, not to mention less toxic, ways to produce energy. As noted in the film, we need safer forms of energy. The waste pipes need to be closed, and any retrievable barrels recovered from the ocean floor and secured. If we do nothing, our environment will continue to deteriorate, and so will human health.



The oceans: Russia’s nuclear waste garbage dump

October 30, 2017

Feisty mayor in Russia’s Far East wants his nuclear trash collected

While lighthouses run on atomic batteries in Russia have become rare, especially along the coasts of the Baltic and Barents Seas, they still have their adherents in the country’s Far East.  by Charles Digges  While lighthouses run on atomic batteries in Russia have become rare, especially along the coasts of the Baltic and Barents Seas, they still have their adherents in the country’s Far East.

A group of radioactivity tracking sleuths on Sakhalin Island in the Pacific say they have hunted down an abandoned generator that ran on strontium-90 sunk off the shores of one of its premier beach resorts.

But that, they say, is just the tip of the iceberg: The discovery lies in the middle of a radioactive graveyard that includes no fewer than 38 sunken vessels containing nuclear waste, and two nuclear warheads that went down when a Soviet bomber crashed near the island’s southern tip in 1976.

Though the Russian Ministry of Defense recently began acknowledging the lost bomber, tracing the origins of the other nuclear cast offs is not so easy.

But at least, says Nikolai Sidirov, mayor of the coastal town of Makarov on Sakhalin’s Bay of Patience, his town knows what this new discovery is – and they want it raised from the depths with the rest of the glowing junk.

Speaking to Novaya Izvestiya, a popular tabloid that morphed out of the official Soviet-era mouthpiece Izvestiya, Sidirov said satellite photos tracking the location of the crashed bomber have turned up something else lurking under the waves: An RTG.

That’s short for Radioisotope Thermoelectric Generator, a small radioactive energy source that for decades powered thousands of Soviet lighthouses and other navigational beacons along Russia’s Baltic, Arctic and Pacific coasts.

After the fall of the Soviet Union and the crash of the Russian economy, officials lost track of many of the RTGs as bureaucracies collapsed and records went missing. Thieves pillaged them for their valuable metal, exposing their strontium innards. Hikers and shepherds, drawn to their atomic heat, would stagger out of the woods sick with radiation poisoning.

Around Murmansk and on the Pacific coast, frightful reports about strontium elements turning up on beaches proliferated in local media. Some newly independent Soviet republics telegraphed anxieties about their inherited RTGs back to Moscow – along with requests to come take them away.

And then there was the biggest fear of all: What if strontium 90 from these virtually unguarded, remotely radiological sources ended up in the hands of terrorists who wanted to make a dirty bomb?

So far, that hasn’t happened – anybody trying to make off with a strontium battery would likely end up very ill or dead. But when three woodsmen in the former Soviet Republic of Georgia turned up in a hospital with radiation burns and caught the attention of the International Atomic Energy Agency, the dangers of orphaned Soviet RTGs were finally on everyone’s mind.

A colossal effort spearheaded by the Norwegian government entirely rid the coasts of the Barents, Kara and White Seas of more than 180 RTGs. By infusing €20 million into the push, Norway helped Russia replace the strontium 90 batteries on these lighthouses and beacons with solar power over a six year period ending in 2015.

In all, Rosatom, Russia’s state nuclear corporation, says it has decommission more than 1000 RTGs throughout the country, adding that it has mostly eliminated the hazard of these stray radioactive sources from its coastlines.

But some areas have not been so lucky, at least according to the mayor of Makarov out on Sakhalin Island, six times zones east of Moscow. Sidirov, a feisty campaigner who had been publicly heckling the capital about the nuclear trash in the seas near his town for years, says divers have located the RTG, and that he now has the coordinates of where it lies. He told Novaya Izvestiya he will pass on the RTGs location to what he calls “competent authorities” lest it end up in scheming hands.

How the RTG, which lies in 14 meters of water, came to be there is still anyone’s guess. The Russian Navy sent a statement to the newspaper insisting that all RTGs under the purview of the Pacific Fleet have been hunted down and destroyed.

But Russia’s environmental oversight agency confirmed that there were numerous radioactive foundlings in the oceans off Sakhalin Island, though they didn’t identify Sidirov’s RTG specifically.

It certainly wouldn’t be the first time someone screwed up with an RTG in the area, however. Twenty years ago, in 1997, a helicopter from Russia’s Emergency Services Ministry accidentally dropped a strontium-powered RTG into Sakhalin’s waters. It was later retrieved by the navy.

So far, Rosatom has remained mum on the veracity of Sidirov’s claim about the RTG. But since the history of the downed bomber and the other hazards in his area has been confirmed, there’s every reason to believe him about the RTG. And he wants it gone.

“The ecological authorities and the military, they’re being very stubborn about coming to collect it,” Sidorov told Novaya Izvestiya. “It’s there job to collect it – if they’re ever interested, I’ll be here to show them exactly where it is.”

The vanishing Arctic ice

May 18, 2017

The hard truth, however, is that the Arctic as it is known today is almost certainly gone. Efforts to mitigate global warming by cutting emissions remain essential. But the state of the Arctic shows that humans cannot simply undo climate change. They will have to adapt to it

The Arctic as it is known today is almost certainly gone On current trends, the Arctic will be ice-free in summer by 2040 Apr 29th 2017

THOSE who doubt the power of human beings to change Earth’s climate should look to the Arctic, and shiver. There is no need to pore over records of temperatures and atmospheric carbon-dioxide concentrations. The process is starkly visible in the shrinkage of the ice that covers the Arctic ocean. In the past 30 years, the minimum coverage of summer ice has fallen by half; its volume has fallen by three-quarters. On current trends, the Arctic ocean will be largely ice-free in summer by 2040.

Climate-change sceptics will shrug. Some may even celebrate: an ice-free Arctic ocean promises a shortcut for shipping between the Pacific coast of Asia and the Atlantic coasts of Europe and the Americas, and the possibility of prospecting for perhaps a fifth of the planet’s undiscovered supplies of oil and natural gas. Such reactions are profoundly misguided. Never mind that the low price of oil and gas means searching for them in the Arctic is no longer worthwhile. Or that the much-vaunted sea passages are likely to carry only a trickle of trade. The right response is fear. The Arctic is not merely a bellwether of matters climatic, but an actor in them (see Briefing).

The current period of global warming that Earth is undergoing is caused by certain gases in the atmosphere, notably carbon dioxide. These admit heat, in the form of sunlight, but block its radiation back into space, in the form of longer-wavelength infra-red. That traps heat in the air, the water and the land. More carbon dioxide equals more warming—a simple equation. Except it is not simple. A number of feedback loops complicate matters. Some dampen warming down; some speed it up. Two in the Arctic may speed it up quite a lot.

One is that seawater is much darker than ice. It absorbs heat rather than reflecting it back into space. That melts more ice, which leaves more seawater exposed, which melts more ice. And so on. This helps explain why the Arctic is warming faster than the rest of the planet. The deal on climate change made in Paris in 2015 is meant to stop Earth’s surface temperature rising by more than 2°C above pre-industrial levels. In the unlikely event that it is fully implemented, winter temperatures over the Arctic ocean will still warm by between 5° and 9°C compared with their 1986-2005 average.

The second feedback loop concerns not the water but the land. In the Arctic much of this is permafrost. That frozen soil locks up a lot of organic material. If the permafrost melts its organic contents can escape as a result of fire or decay, in the form of carbon dioxide or methane (which is a more potent greenhouse gas than CO2). This will speed up global warming directly—and the soot from the fires, when it settles on the ice, will darken it and thus speed its melting still more.

Dead habitat walking

 A warming Arctic could have malevolent effects. The world’s winds are driven in large part by the temperature difference between the poles and the tropics. If the Arctic heats faster than the tropics, this difference will decrease and wind speeds will slow—as they have done, in the northern hemisphere, by between 5 and 15% in the past 30 years. Less wind might sound desirable. It is not. One consequence is erratic behaviour of the northern jet stream, a circumpolar current, the oscillations of which sometimes bring cold air south and warm air north. More exaggerated oscillations would spell blizzards and heatwaves in unexpected places at unexpected times.

Ocean currents, too, may slow. The melting of Arctic ice dilutes salt water moving north from the tropics. That makes it less dense, and thus less inclined to sink for the return journey in the ocean depths. This slowing of circulation will tug at currents around the world, with effects on everything from the Indian monsoon to the pattern of El Niño in the Pacific ocean.

The scariest possibility of all is that something happens to the ice cap covering Greenland. This contains about 10% of the world’s fresh water. If bits of it melted, or just broke free to float in the water, sea levels could rise by a lot more than today’s projection of 74cm by the end of the century. At the moment, the risk of this happening is hard to assess because data are difficult to gather. But loss of ice from Greenland is accelerating.

What to do about all this is a different question. Even if the Paris agreement is stuck to scrupulously, the amount of carbon dioxide already in the atmosphere, together with that which will be added, looks bound eventually to make summer Arctic sea ice a thing of the past. Some talk of geoengineering—for example, spraying sulphates into the polar air to reflect sunlight back into space, or using salt to seed the creation of sunlight-blocking clouds. Such ideas would have unknown side-effects, but they are worth testing in pilot studies.

The hard truth, however, is that the Arctic as it is known today is almost certainly gone. Efforts to mitigate global warming by cutting emissions remain essential. But the state of the Arctic shows that humans cannot simply undo climate change. They will have to adapt to it.

Arctic warm water is now being pushed to the surface

May 18, 2017
Climate change is literally turning the Arctic ocean inside out, WP,  April 6 There’s something special — and very counterintuitive — about the Arctic Ocean.

Unlike in the Atlantic or Pacific, where the water gets colder as it gets deeper, the Arctic is upside-down. The water gets warmer as it gets deeper. The reason is that warm, salty Atlantic-originating water that flows into the Arctic from the south is more dense, and so it nestles beneath a colder, fresher surface layer that is often capped by floating sea ice. This state of “stratification” makes the Arctic Ocean unique, and it means that waters don’t simply grow colder as you travel farther north — they also become inverted.

But in a paper in Science released Thursday, a team of Arctic scientists say this fundamental trait is now changing across a major part of the Arctic, in conjunction with a changing climate.

“I first went to the Arctic in about 1969, and I’ve never seen anything like this,” said Eddy Carmack, a researcher with Fisheries and Oceans Canada and one of the study’s authors. “Back then we just assumed the Arctic is as it is and it will be that way forevermore. So what we’re seeing in the last decade or so is quite remarkable.”

In a large area that they term the eastern Eurasian basin — north of the Laptev and East Siberian seas, which in turn are north of Siberia — the researchers found that warm Atlantic water is increasingly pushing to the surface and melting floating sea ice. This mixing, they say, has not only contributed to thinner ice and more areas of open water that used to be ice covered, but it also is changing the state of Arctic waters in a process the study terms “Atlantification” — and these characteristics could soon spread across more of the Arctic ocean, changing it fundamentally.

The study was led by Igor Polyakov of the University of Alaska at Fairbanks, in collaboration with a team of 15 researchers from the United States, Canada, Russia, Poland, Germany and Norway.

To understand the work, it’s important to first note the extensive and rapid shrinkage of Arctic sea ice of late in an area to the north of Siberia. The area, known as the eastern Eurasian basin, is seeing thinner ice and more months of open water. Arctic sea ice is a linchpin of the Earth’s climate system………

Ocean acidification spreading rapidly in Arctic Ocean,

March 9, 2017

International team reports ocean acidification spreading rapidly in Arctic Ocean, EurekAlert, 28 Feb 17, UNIVERSITY OF DELAWARE  Ocean acidification (OA) is spreading rapidly in the western Arctic Ocean in both area and depth, according to new interdisciplinary research reported in Nature Climate Changeby a team of international collaborators, including University of Delaware professor Wei-Jun Cai.

The research shows that, between the 1990s and 2010, acidified waters expanded northward approximately 300 nautical miles from the Chukchi slope off the coast of northwestern Alaska to just below the North Pole. Also, the depth of acidified waters was found to have increased, from approximately 325 feet to over 800 feet (or from 100 to 250 meters).

“The Arctic Ocean is the first ocean where we see such a rapid and large-scale increase in acidification, at least twice as fast as that observed in the Pacific or Atlantic oceans,” said Cai, the U.S. lead principal investigator on the project and Mary A.S. Lighthipe Professor of Earth, Ocean, and Environment at UD.

“The rapid spread of ocean acidification in the western Arctic has implications for marine life, particularly clams, mussels and tiny sea snails that may have difficulty building or maintaining their shells in increasingly acidified waters,” said Richard Feely, NOAA senior scientist and a co-author of the research. Sea snails called pteropods are part of the Arctic food web and important to the diet of salmon and herring. Their decline could affect the larger marine ecosystem.

Among the Arctic species potentially at risk from ocean acidification are subsistence fisheries of shrimp and varieties of salmon and crab.

Other collaborators on the international project include Liqi Chen, the Chinese lead principal investigator and scientist with the Third Institute of Oceanography of State Oceanic Administration of China; and scientists at Xiamen University, China and the University of Gothenburg, Sweden, among other institutions…….

Arctic ocean ice melt in the summer, once found only in shallow waters of depths less than 650 feet or 200 meters, now spreads further into the Arctic Ocean.

“It’s like a melting pond floating on the Arctic Ocean. It’s a thin water mass that exchanges carbon dioxide rapidly with the atmosphere above, causing carbon dioxide and acidity to increase in the meltwater on top of the seawater,” said Cai. “When the ice forms in winter, acidified waters below the ice become dense and sink down into the water column, spreading into deeper waters.”

Possibility of drastic cooling in North Atlantic

March 9, 2017

Drastic cooling in North Atlantic beyond worst fears, scientists warn

Climatologists say Labrador Sea could cool within a decade before end of this century, leading to unprecedented disruption, reports Climate News Network, Guardian,  , 25 Feb 17, For thousands of years, parts of northwest Europe have enjoyed a climate about 5C warmer than many other regions on the same latitude. But new scientific analysis suggests that that could change much sooner and much faster than thought possible.

Climatologists who have looked again at the possibility of major climate change in and around the Atlantic Ocean, a persistent puzzle to researchers, now say there is an almost 50% chance that a key area of the North Atlantic could cool suddenly and rapidly, within the space of a decade, before the end of this century.

That is a much starker prospect than even the worst-case scientific scenario proposed so far, which does not see the Atlantic ocean current shutdown happening for several hundred years at least.

A scenario even more drastic (but fortunately fictional) was the subject of the 2004 US movie The Day After Tomorrow, which portrayed the disruption of the North Atlantic’s circulation leading to global cooling and a new Ice Age.

To evaluate the risk of extreme climate change, researchers from the Environnements et Paléoenvironnements Océaniques et Continentaux laboratory (CNRS/University of Bordeaux, France), and the University of Southamptondeveloped an algorithm to analyse the 40 climate models considered by the Fifth Assessment Report.

The findings by the British and French team, published in the Nature Communications journal, in sharp contrast to the IPCC, put the probability of rapid North Atlantic cooling during this century at almost an even chance – nearly 50%.

Current climate models foresee a slowing of the meridional overturning circulation (MOC), sometimes known also as the thermohaline circulation, which is the phenomenon behind the more familiar Gulf Stream that carries warmth from Florida to European shores. If it did slow, that could lead to a dramatic, unprecedented disruption of the climate system.

In 2013, drawing on 40 climate change projections, the IPCC judged that this slowdown would occur gradually, over a long period. Its findings suggested that fast cooling of the North Atlantic during this century was unlikely.

But oceanographers from EU emBRACE had also re-examined the 40 projections by focusing on a critical spot in the northwest of the North Atlantic: the Labrador Sea.

The Labrador Sea is host to a convection system ultimately feeding into the ocean-wide MOC. The temperatures of its surface waters plummet in the winter, increasing their density and causing them to sink. This displaces deep waters, which bring their heat with them as they rise to the surface, preventing the formation of ice caps.

The algorithm developed by the Anglo-French researchers was able to detect quick sea surface temperature variations. With it they found that seven of the 40 climate models they were studying predicted a total shutdown of convection, leading to abrupt cooling of the Labrador Sea by 2C to 3C over less than 10 years. This in turn would drastically lower North Atlantic coastal temperatures.

But because only a handful of the models supported this projection, the researchers focused on the critical parameter triggering winter convection: ocean stratification. Five of the models that included stratification predicted a rapid drop in North Atlantic temperatures.

The researchers say these projections can one day be tested against real data from the international OSnap project, whose teams will be anchoring scientific instruments within the sub-polar gyre (a gyre is any large system of circulating ocean currents).

If the predictions are borne out and the North Atlantic waters do cool rapidly over the coming years, the team says, with considerable understatement, climate change adaptation policies for regions bordering the North Atlantic will have to take account of this phenomenon.

NASA project – Oceans Melting Greenland (OMG) studies future sea level rise

March 9, 2017

OMG measurements of Greenland give us a glimpse of future sea rise 24 February 2017 by John Abraham  If you meet a group of climate scientists, and ask them how much sea levels will rise by say the year 2100, you will get a wide range of answers. But, those with most expertise in sea level rise will tell you perhaps 1 meter (a little over three feet). Then, they will immediately say, “but there is a lot of uncertainty on this estimate.” It doesn’t mean they aren’t certain there will be sea level rise – that is guaranteed as we add more heat in the oceans. Here, uncertainty means it could be a lot more or a little less.

Why are scientists not certain about how much the sea level will rise? Because there are processes that are occurring that have the potential for causing huge sea level rise, but we’re uncertain about how fast they will occur. Specifically, two very large sheets of ice sit atop Greenland and Antarctica. If those sheets melt, sea levels will rise hundreds of feet.

Parts of the ice sheets are melting, but how much will melt and how fast will the melting occur? Are we talking decades? Centuries? Millennia? Scientists really want to know the answer to this question. Not only is it interesting scientifically, but it has huge impacts on coastal planning.

One reason the answer to this question is illusive is that melting of ice sheets can occur from above (warm air and sunlight) or from below (warm ocean waters). In many instances, it’s the melting from below that is most significant – but this melting from below is really hard to measure.

With hope we will have a much clearer sense of ice sheet melting and sea level rise because of a new scientific endeavor that is part of a NASA project – Oceans Melting Greenland (OMG). This project has brought together some of the best oceanographers and ice experts in the world. The preliminary results are encouraging and are discussed in two recent publications here and here.

In the papers, the authors note that Greenland ice loss has increased substantially in recent decades. It now contributes approximately 1/3 to total sea level rise. The authors want to know whether this contribution will change over time and they recognize that underwater processes may be the most important to study. In fact, they note in their paper:

Specifically, our goal is improved understanding of how ocean hydrographic variability around the ice sheet impacts glacial melt rates, thinning and retreat.

In plain English, they want to know how water flow around Greenland affects the ice melt.

Their experiments are measuring a number of key attributes. First, yearly changes in the temperature of ocean water near Greenland. Second, the yearly changes to the glaciers on Greenland that extend into the ocean waters. Third, they are observing marine topography (the shape of the land underneath the ocean surface).

The sea floor shape is quite complicated, particularly near Greenland. Past glaciers carved deep troughs in the sea floor in some areas, allowing warm salty water to reach huge glaciers that are draining the ice sheet. As lead OMG investigator Josh Willis said:

What’s interesting about the waters around Greenland is that they are upside down. Warm, salty water, which is heavy, sits below a layer of cold, fresh water from the Arctic Ocean. That means the warm water is down deep, and glaciers sitting in deep water could be in trouble.

As the warm water attacks marine glaciers (glaciers that extend into the ocean), the ice tends to break and calve, retreating toward land. In some cases, the glaciers retreat until their grounding line coincides with the shore. But in other cases the undulating surface allows warm water to wear the glacier underside for long distances and thereby increase the risk of large calving events.

Oftentimes, when glaciers near the coast break off they uncork other ice that can then more easily flow into the oceans.

Click here to read the rest

Radiation effects of Chernobyl and Fuykuhsima nuclear disasters

March 20, 2016

Comparing Fukushima and Chernobyl concerning radionuclide distribution and Isotopic variations on Land and effects on the environment. New studies by Timothy Mousseu and his team.

Tim was interviewed and he gave us an overall look at the situation and compares the 2 nuclear disasters for us. Link to Timothy Mousseau

Strontium and Plutonium isotopes

“Most of the those other isotopes in are very small quantities relative to the cesium that were released – that were very different to the Chernobyl situation where huge quantities of Strontium, about equal Cesium and Strontium were released along with several isotopes of of Plutonium, The Plutonium is in the process of decaying into Americium and (that) is more radioactive than Plutonium apparent”

Strontium in Fukushima Prefecture
In Japan the the Strontium was not volatised as did Cesium and Iodine and it did not travel far (on Land) but large quantities of Strontium are still being released by the ground water at the plant and and from the cooling water leaking into the ocean.

Contamination of the Nursery areas in the deep ocean and off the coast of Japan?
On the 4th February 2016 a Press conference was held in the Foriegn Correspondents Club in Japan calling for more research funding to be done concerning the Human health effects of the Fukushima nuclear disaster and we find a similar problem faced by epidemiologists and researchers to the lack of interest and therefore funding in this area. During the interview with Timothy we touched on research funding issues in a variety of areas relevant to the nuclear disaster including the aquatic environment.
Timothy responded to a question put to him saying that only some studies have been done (to his knowledge) on the bottom feeding fish and that these fish had been found to high contamination but that very other few studies have been done. He went on to say;
“surveillance work to determine wether fish can be consumed rather than the biological impacts (and) ecological impacts of the fish themselves, this is one of the important questions and that is one of the interests we have as a group.”
He went on to say that the issues for thre authorities are that;

“Whether or not —“  The fish are below regulatory limits for export, that is the main – you know- economic driver of interest but the biological drive is almost nil as far as I can tell”

Terrestrial (land) contamination issues on wildllife, plant and micro–organisms
Of the limited research happening in this area, Tims and his team is at the forefront in developing novel and creative ways to ascertain the effects from the nuclear disaster. Usng their experience gleaned from the radiological effected areas of Chernobyl (with the help of Anders Pape Møller, CNRS, University of Paris-Sud) and applying this invaluable eperience on the highly effected areas on the mountain sides and hills sorrounding the Fukushima city to the coastal areas including Namie and IItate areas of Fukushima and some less contaminated areas for comparison studies.
These studies have resulted in some 8 to 9 primary papers on birds and Insects. Also, new research on Rodents is about to be released and cameras have been set up in various locations studying large mamals such as pigs and monkeys.

Oze National Park in southern Fukushima Prefecture and Northern Chiba Prefecture (north of Tokyo)
On the search for clean areas for comparison studies, Tim said that he was disapointed. He looked at the huge and remote Oze national Park as a possible localtion (largly situated in the Chiba Prefecture but his radiation readings were more than 10 times normal at 0.5 mcSv/h (compared to the contaminated research area with 30 – 40 and 50 mcSv/h in the hills sorrounding Fukushima City.
we talked about the effects of sediment transfer from the mountains down through the lakes and forests of Oze Park. Tim then mentioned a Typhoon he witnessed that stripped large areas of soil into the rivers and was concerned of the effects in the extensive lake system in Oze Park and the result of contamination making its way to the river outflows on the coast and effects on the fisheries. Asked as to wether any studies were being done he said that in the last year (some 5 years after the nuclear accident) many geollogists from around the world were vying for funding to commence studies in “the next year or two” studying such issues but presently;

“I don`t know of any studies being done” he said

The issue of funding was mentioned here and that the Japanese government seemed only interested in funding studies for issues around food and health issues (link to issues around health studies being grossly limited here
(courtesy of FFCJ )
Only a handful of scientists can afford to do these studies he went on to say. And I mentioned that TEPCO owned the larger share of this PNational Park. (Some findings concerning the issues and info on Oze National Park… )

Discussing the pros and cons of the peer review process
He said that it is always a consttant battle

“.. and I suppose its a really positive aspect of the peer review process”

On the pitfalls of the process he mentioned that for some decades finding sufficiently knowledgeable and open minded reviewers to consider “creative studies” is difficult. He went onto say that he and dis colleagues have managed to submit and have accepted some 80 papers in the last ten years concerning Chernobyl and Fukushima.

Funding issues for research and analysis
Here we discussed Ken Buesslers citizen crowd funding campaign for testing water off the west coast USA.
Tim noted that his costs come to some hundreds of thousands of dollars a year and that Kens study was very limited due to the cost of transportation of samples and costs for sampling etc. Kens was limited by the lack of funding raised concerning this campaign and pointed out that the costs are not fully covered by the monies raised.
“its a limited effort and doesnt in any way provide the level of info to address the bigger question but, that said, he has done a fabulous job with what he has got to do it”
I hen asked Tim if such a scheme might be implimented in Japan, he said
“You dont want the middle schoolers collecting radioactive dirt do you?”
Also, getting permission to work in these contaminated areas is difficult and omly open to professional research activities.

The new Japanese Secrets Law brought in at the end of 2013
On this he said that (aside form legal issues) there is “alot of self censorship in Japan to do with this disaster”
But he said that locals in Fukshima Prefecture have been incredibly helpful giving food, finacial support and property for laboratory analysis.
“There is an incidious form of censorship going on that most people are not tuned intoit and thats the fact that if you dont fund science – the resouces for research – it doesnt get done and (by) consequesnce questions are not asked and certainly not answered”
Lack of funding is the biggest form of censorship with this disaster.
He went on to say that on funding issues;

“I haven`t had a much luck with som of the conventional (funding) sources”

Chernobyl, new mice study
Last week Tim said he produced a study showing hightened prevelance of cataracts in the eyes of mice.
and that this was corroborated with an earlier study on birds.

Finding clues and evidence on previous relevant biosphere studies to date
A meta analysis is being done on previous studies looking into plant, animals and bacteria are adpting or evolving, on some level or other. Looking at all the evidence (including the issue of high U.V. radiation found on earth millions of years ago). His conclusions seem to point to the facts that the evolutionary response was “actually negative” and this report should be out in about a month. His earlier study on birds with Black pigment showed that some resiliance in a small amount of bird species was due to them using antioxidents to protect from gentic damage but that some cost. This might limit the lower antioxident levels left in these birds might cause problems for them to find mates and deal with environmental changes (such as climate change)
“Organisms can use these antioxidents to the mutational load OR use it to advertise to a mate or defend itself against some other diseases but there is this ultimate trade off that limits the success in one way or another”
Thermal regulation might be another factor due to this imbalance he said.

Chernobyl Heart – Fukushima heart?
We discussed pin holes found in babies even today in the contaminated areas of Belarus, Ukraine and Russia. Tim said that it is recognised that there are well documented cardio vascular damage in the areas of contamination and that he would check out this problem in the near future using samples he has collected already. (A previous article I have looked at some statistics and posits on this…)

Issues on the decontamination and Top soil removal
We also discussed the issues of the damage to the environment by removing the living soil around houses and roads to reduce the geiger readings (dose). Tim also said that only limited top soil is removed and

“.. a superficial attempt to provide this appearencce of reduced contamination but it is not a solution to the area”

He went onto point out that the leaves and branches that fall will eventually cover these areas that are cleaned and a radioactive build up will re occour over time. He is running similar test into the issue found in Chernobyl with micro organisms not survivng and causing forest debris to build up (and causing wildfires etc). He is not sure if the levels and isotopic types found in Fukushima are going to cause the same problem that was found in Chernobyl but that he would know when an experiment he is running is concluded in the next few months or so.

Government and IAEA ignore risks of Fukushima radiation to coastal communitis

October 19, 2015

UK research clearly shows that coastal zone populations are exposed to doses of marine radioactivity under the following set of environmental parameters:

  1. resident in coastal zones up to at least 200kms downstream of a source of liquid radioactive discharges to sea
  2. resident in coastal zones adjacent to coastal waters with high suspended sediment loadings
  3. resident in coastal zones adjacent to extensive fine sediment inter tidal/sub tidal sediment deposits (salt marsh, mud flats etc)
  4. resident in coastal zones subject to prevailing onshore winds and storm or tidal conditions generating marine aerosols, sea spray and coastal inundation
  5. resident in coastal zones where such parameters (A to D above) have, elsewhere, been shown to enable/facilitate the penetration of marine radioactivity for across the shoreline and up to 10 miles inland from the coast.


Fukushima: Japanese government and IAEA ignore radiation risks to coastal population Tim
Deere-Jones 28th September 2015 

Radiation can be carried long distances by marine currents, concentrated in sediments, and carried in sea spray 16km or more inland, writes Tim Deere-Jones. So Fukushima poses a hazard to coastal populations and any who eat produce from their farms. So what are the Japanese Government and IAEA doing? Ignoring the problem, and failing to gather data.

Review of the official Japanese marine monitoring programme reveals that the Japanese government is turning a blind eye to the risks of marine radiation from the stricken Fukushima site.

The strategy it has adopted, with the support of the IAEA, consistently ignores the latest evidence about the way marine radioactivity behaves in inshore marine environments and the potential radiological risks to coastal populations.

This strategy is based on a flawed hypothesis, developed by the nuclear industry through the late 1940s and early 1950s, when both oceanography and the study of the behaviour and fate of radioactivity in marine environments were in their absolute infancy.

As a result, the principal conclusions on the marine impact of the Fukushima event put forward in recent reports from the IAEA, the Government of Japan and it’s relevant agencies, minimise the environmental and public health negatives and emphasise a range of hypothetical ‘positives’.

This is a major flaw because the empirical evidence from ‘non-aligned’ research in the UK is that coastal communities are subjected to highly enriched doses of marine radioactivity through pathways of exposure, and from environmental parameters, which will not be analysed and researched under current Fukushima monitoring plans.

As a result, significant public health impacts of the event will not be documented, nor will important data about the way Fukushima marine radioactivity behaves at the coastline.

Failing to gather the evidence of coastal radiation (more…)

Woods Hole Oceanographic Institution, University of Victoria, leaders in studying radiation in Pacific Ocean

September 4, 2015

Great article. As an anti nuclear activist myself, I think that it is most important that we keep our concerns in proportion. The nuclear industry has so many bad effects, that we don’t ned to exaggerate ones that are not clear. Thankfully, despite government inertia, Buesseler and co are working to establish the facts on the effect if the Fukuhsima disaster on the ocean.

Radiation in the Ocean  Director, World Ocean Observatory The West Coast of the United States seems under siege by negative environmental news: earthquake predictions, oil spills, drought, critically diminished water supply, wildfires, and numerous accounts of unusual coastal events: algae blooms, whale strandings, cancer in seals, collapse of fish stocks, and more.

How to explain? Well, much of this can be attributed to climate factors where rising temperatures have resulted in multiple inter-related consequences: limited glacial melt, increased evaporation, no water, dry land, and the inevitable fire darkening that pristine Pacific air with smoke and ash the length of the coast.

The ocean phenomena may be different. The warming of the ocean surely has an impact on changing growth patterns of marine plants and animals, just as the changing pH or acidity of the ocean has been shown to modify habitat and migrations. But what else?

One argument has been the effect of radiation leaking from the three nuclear power plant reactors shut down by the earthquake and resultant tsunami tidal wave that inundated Fukushima, Japan in 2011, and has been thereafter distributed by ocean currents; indeed there is evidence of a plume of increased concentration of Cesium-134, and other radioactive elements that have been observed at unprecedented levels, spreading out some 5,000 miles into the Pacific toward North and South America. In April of this year, there were headlines declaring that “Fukushima radiation has reached the North American Shore” and concerns were raised, spread through the Internet and press, that this was surely the cause of these otherwise inexplicable anomalous natural events.

There is no Federal agency that funds monitoring of radiation in coastal water, and the present effort, conducted since 2004 by Ken Buesseler, a marine chemist at theWoods Hole Oceanographic Institution, has been underwritten by crowd-funding and the efforts of volunteers taking samples to provide data on cesium isotopes along the west coast of Alaska, the U.S. mainland coast, and Hawaii, the information that has been used to model potential distribution and concentration of any contamination. A comparable effort has been launched in Canada, led by Jay Cullen of the University of Victoria in collaboration with government, academic, and NGO partners.

The radioactivity has been decreased by time, the natural half-life of the isotopes, and by dilution in a very large and deep body of water. In their samples, Buesseler and his “citizen scientists” did detect cesium-137 already in the waters as a result of atmospheric nuclear weapons testing in the 1950s and 60s, and cesium-134 which does not otherwise occur naturally in the ocean and can only be attributed to Fukushima, to serve as a first baseline for subsequent collection, analysis, modeling, and conclusion.

Buesseler channels his research through the Center for Marine and Environmental Radioactivity at the Woods Hole Institute, where he offers a preliminary conclusion that “the amount of cesium-134 reported in these new offshore data is less that 2 Becquerels (a radioactive measure) per cubic meter (the number of decay events per second per 260 gallons of water.) This Fukushima-derived cesium is far below where one might expect any measurable risk to human health or marine life, according to international health agencies. And it is more than 1,000 times lower than acceptable limits in drinking water set by the U.S. Environmental Protection Agency.”

Buesseler continues, “We emphasize that cesium-134 has not been detected YET as it has been detected offshore of North America by Canadian oceanographers… The uncertainty in the predictions by these ocean models only emphasizes the importance of collecting samples from along the shores. Remember too that those models predict interacting levels of both cesium isotopes for the next 2 or 3 years, the highest published prediction is for 20 to 30 Becquerels per cubic meter, or well below what is thought to be of human health and fisheries concerns.”

So, yes, and no. No definitive conclusion, no clear argument that radiation is the cause of those coastal events which distress us so. There is no solace in uncertainty, just as there is no certainty without evidence. The question is immensely important and thanks to Ken Buesseler and all those volunteers alongshore and in research vessels who are working to provide the substance for a real answer.