Archive for the ‘Integral Fast Reactors’ Category

“NuclearHistory” exposes the unpleasant facts about liquid fluoride thorium nuclear reactors

March 10, 2020

Some people believe that liquid fluoride thorium reactors, which would use a high temperature liquid fuel made of molten salt, would be significantly safer than current generation reactors. However, such reactors have major flaws. There are serious safety issues associated with the retention of fission products in the fuel, and it is not clear these problems can be effectively resolved. Such reactors also present proliferation and nuclear terrorism risks because they involve the continuous separation, or “reprocessing,” of the fuel to remove fission products and to efficiently produce U-233, which is a nuclear weapon-usable material. Moreover, disposal of theused fuel has turned out to be a major challenge. Stabilization and disposal of the remains of the very small “Molten Salt Reactor Experiment” that operated at Oak Ridge National Laboratory in the 1960s has turned into the most technically challenging cleanup problem that Oak Ridge has faced, and the site has still not been cleaned up. Last updated March 14, 2019″ Source: Union of Concerned Scientists, at I wonder who is correct, The Union of Scientists or Mr. O’Brien and ScoMo?

The Industry Push to Force Nuclear Power in Australia, Part 1 of A Study of the “Report of the inquiry into the prerequisites for nuclear energy in Australia” Australian Parliamentary Committee nuclearhistory, February 29, 2020, “………Nuclear power enables the great powers to project power. It is a crucial geo-political influencer. If the committee has it’s way, we will be working with Russia and China and others on reactors they want to develop, that their own people have not had a say in, that are all based upon reactor designs first thought of in the 1950s, and where actual examples were built at that time, turned out to be unsafe failures which continue to present cost and risk at their sites to this day.

The committee’s first recommendation to government includes the following two sub parts:

“b. developing Australia’s own national sovereign capability in nuclear energy over time; and

c. procuring next-of-a-kind nuclear reactors only, not first-of-a- kind.” end quote.

If Australia becomes a nuclear powered nation, it will become subject to the directives of the IAEA in regard to the standards of those nuclear reactors and the procedures and actions which must take place in regard to them. Australia will also become subject to IAEA directives in regard to the standards and specifications of the Australian national energy grid. Further, the ICRP and other bodies will have an enhanced ability to direct and advise Australia and its people. Further international non proliferation requirements will dictate Australian actions regarding “special nuclear substances.” These requirements including control of information – security provisions – regarding the use of and production of “special nuclear substances”. As is true all over the world, nuclear industries are alone in that they do not, indeed cannot, fully disclose operational matters to share holders. This hardly renders Australia and Australians in control of its own sovereign nuclear technology.
Collaborator nations can be expected to demand certain requirements from Australia in return for their help. In the case of China, which wishes to produce small, light reactors of new types partially to provide a means by which it can quickly transform its navy into a nuclear one, in particular, there may well be special requirements placed upon Australia in return for Chinese collaboration. Who knows what Putin will demand in return for Russian collaboration . America might want many things in return. And so on. No nation which might help Australia would want Australia to benefit to the point where we might gain too much control and power over nuclear facilities located in this country.

“procuring next-of-a-kind nuclear reactors only, not first-of-a- kind” How refreshing that the Committee does not want the first gen iv type reactors – the Fermi 1 and Monju type for example. Those dangerous failures that sit like wounded Albatross in the US and Japan and continue to demand taxpayer funds. The failure of Monju, which has long been foreseen by many, renders the original basis for the Japanese nuclear industry subject to severe doubt. As result of vastly improved safety standards, fuel reprocessing in Japan is in doubt, its future course uncertain, and the nature of high level waste management has been an even more pressing issue.

In any event, it is my view that  the new  types of reactor China is experimenting with are dual use.  That is, they have both military and civilian uses in China. There is little overt opposition to either in China as protest in that nation is dangerous, costly and often lethal. I do not see it in Australia’s national interest to collaborate with Chinese nuclear reactor experimental development. Our contribution will probably speed the ascendancy of a Chinese nuclear navy, and the contribution to be made to Australia by a Chinese/Australian Gen IV is highly suspect, both in the short and long term, both in tactical and strategic terms. And if we are not to buy “first of a kind” reactors but “next of a kind” ones, does this mean we wont buy unproven experimental units but will buy unproven Mk1 production units which have not yet been used to supply power to a grid and which have proven that they fulfil the promises this Parliamentary Committee is making? No such reactors exist with a track record in service providing economic power to any nation grid. None have existed in such deployment and there is no service life span in commercial use for any of these “new” reactor types. 10 years would be the bare minimum to test such a unit over. Anything less is not satisfactory
Alvin M. Weinberg was the Nikola Tesla of Gen IV reactor design. “Weinberg replaced Wigner as Director of Research at ORNL in 1948, and became director of the laboratory in 1955. Under his direction it worked on the Aircraft Nuclear Propulsion program, and pioneered many innovative reactor designs, including the pressurized water reactors (PWRs) and boiling water reactors (BWRs), which have since become the dominant reactor types in commercial nuclear power plants, and Aqueous Homogeneous Reactor designs.” (Source: Wikipedia at “ORNL successfully built and operated a prototype of an aircraft reactor power plant by creating the world’s first molten salt fueled and cooled reactor called the Aircraft Reactor Experiment (ARE) in 1954, which set a record high temperature of operation of 1,600 °F (870 °C). Due to the radiation hazard posed to aircrew, and people on the ground in the event of a crash, new developments in ballistic missile technology, aerial refueling and longer range jet bombers, President Kennedy canceled the program in June 1961.[30][31]” Source: ibid.
There’s not much that is new under the sun, says the Bible, and that’s probably very generally true. If we get the vision of a flying nuclear reactor out of heads for a minute, it seems as first glance that the Weinberg molten fuel reactor had something going for it. If it didn’t leak, it couldn’t do what a “normal” is capable of doing – over heating zirconium fuel rods, and melting steel to enable the overheated fuel to escape into the biosphere. So how does the molten fuel reactor work? How come it can work without melting its containment? Well, Wikipedia explains it like this: “The Molten-Salt Reactor Experiment (MSRE) set a record for continuous operation and was the first to use uranium-233 as fuel. It also used plutonium-239 and the standard, naturally occurring uranium-235. The MSR was known as the “chemist’s reactor” because it was proposed mainly by chemists (ORNL’s Ray Briant and Ed Bettis (an engineer) and NEPA’s Vince Calkins),[34] and because it used a chemical solution of melted salts containing the actinides (uranium, thorium, and/or plutonium) in a carrier salt, most often composed of beryllium (BeF2) and lithium (LiF) (isotopically depleted in Lithium-6 to prevent excessive neutron capture or tritium production) – FLiBe.[36] The MSR also afforded the opportunity to change the chemistry of the molten salt while the reactor was operating to remove fission products and add new fuel or change the fuel, all of which is called “online processing”.[37]” Source: ibid. As we can see, though the piece does not explain the materials used to construct the reactor – which must have been very tolerant of very high temperatures – the piece is clear that this reactor did produce high level nuclear waste. The fission products. These substances comprise high level nuclear waste. While this reactor type might consume weapons plutonium and fission it into high level waste, the reactor as described does NOT solve the high level waste problem. In an era in which the major nuclear powers have torn up nuclear weapon limitation treaties, it is moot as to whether either the USA or Russia would contemplate feeding their stockpiled bomb fuel into an MSR. The MSR does not solve the fission product waste inventory which is growing on planet earth. The wikipedia article does not describe whether or not the MSR reactor releases radioactive gases to the atmosphere as conventional reactor do at refuelling time.
There is no doubt that Wigner was a brilliant person. Many people view him as a visionary with a singular focus on reactor safety and on new ways of doing things in the 1950s and 1960s. Wikipedia also states the following: “In the 1960s Weinberg also pursued new missions for ORNL, such as using nuclear energy to desalinate seawater. ” Source Ibid. So know you know where the accountant and former politician Cory Bernardi got his idea about desalination via any old reactor from. Genius research Cory. Solar panels can make hydrogen and oxygen and turn sea water into fresh too. It can recharge electric cars, power a macbook and power the natural world. Fancy that. Apparently some people prefer molten salt reactors, proclaimed as new, when actually they date from the 1950s. Wow. I wonder why they didn’t take off. Excuse the pun.
Before I complete this post, let’s delve a little deeper into the MSR, by consulting some actual technical papers. Do try and keep up, Mr. Bernardi and Mr. O’Brien.

A technical report on the original trial run of the reactor is here (we won’t be getting this one, it’s first of type): “Experience with the Molten-Salt Reactor Experiment.” Paul N. Haubenreich and J.R.Engel, 1970.

What the fate of the material removed from the fuel ? That is, where is the nuclear waste now and how much has it cost to mind? The Union of Concerned Scientists inform us that: “

Some people believe that liquid fluoride thorium reactors, which would use a high temperature liquid fuel made of molten salt, would be significantly safer than current generation reactors. However, such reactors have major flaws. There are serious safety issues associated with the retention of fission products in the fuel, and it is not clear these problems can be effectively resolved. Such reactors also present proliferation and nuclear terrorism risks because they involve the continuous separation, or “reprocessing,” of the fuel to remove fission products and to efficiently produce U-233, which is a nuclear weapon-usable material. Moreover, disposal of theused fuel has turned out to be a major challenge. Stabilization and disposal of the
remains of the very small “Molten Salt Reactor Experiment” that operated at Oak
Ridge National Laboratory in the 1960s has turned into the most technically challenging cleanup problem that Oak Ridge has faced, and the site has still not been cleaned up. Last updated March 14, 2019″ Source: Union of Concerned Scientists, at I wonder who is correct, The Union of Scientists or Mr. O’Brien and ScoMo?

The end.

If the nuclear waste problem did not exist, those front and back yards would not now be resident in drums at Woomera Rocket Range. If waste did not have to take up residence somewhere, waste would not be a problem. Because there would not be any to store. Australia does not have nuclear power. But we have plenty of ancient and modern nuclear waste. People who do not want nuclear waste or nuclear emissions are called by governments and the industry “NIMBY’s” (Not In My Backyard). I remind the Australian government here and now who have to removed contaminated back yards from Australian homes in the 1970s. It was the Australian Government. What hypocrites you all are!!! To be continued …..

The ‘advanced’ nuclear power sector is dystopian  

February 13, 2020, Jim Green – Nuclear Monitor 10th September 2019  The ‘advanced’ nuclear power sector is dystopian because of its connections to fossil fuel mining and nuclear weapons proliferation.

A documentary called New Fire was released promoting ‘advanced’ nuclear power concepts last year. The heroes of the film were young entrepreneurs Leslie Dewan and Mark Massie, founders of a start-up called Transatomic Power that was developing a ‘Waste-Annihilating Molten-Salt Reactor’.

Problems arose during the long gestation of New Fire. Transatomic Power gave up on its plan to use nuclear waste as reactor fuel after its theoretical calculations were proven to be false, and the waste-annihilating reactor was reinvented as a waste-producing, uranium-fuelled reactor.

Worse was to come: just before the release of New Fire, Transatomic Power went broke and collapsed altogether. An epic fail.


The Australian parliament’s ‘inquiry into the prerequisites for nuclear energy‘ is shaping up to be another epic fail. The conservative chair of the inquiry claims that “new technologies in the field are leading to cleaner, safer and more efficient energy production.”

But the ‘advanced’ nuclear power sector isn’t advanced and it isn’t advancing.

The next ‘advanced’ reactor to commence operation will be Russia’s floating nuclear power plant, designed to help exploit fossil fuel reserves in the Arctic ‒ fossil fuel reserves that are more accessible because of climate change. That isn’t ‘advanced’ ‒ it is dystopian.

Russia’s enthusiastic pursuit of nuclear-powered icebreaker ships (nine such ships are planned by 2035) is closely connected to its agenda of establishing military and economic control of the Northern Sea Route ‒ a route that owes its existence to climate change.

China General Nuclear Power Group (CGN) says the purpose of its partly-built ACPR50S demonstration reactor is to develop floating nuclear power plants for oilfield exploitation in the Bohai Sea and deep-water oil and gas development in the South China Sea.


‘Advanced’ nuclear reactors are advancing climate change. Another example comes from Canada, where one potential application of small reactors is providing power and heat for the extraction of hydrocarbons from tar sands.

Some ‘advanced’ reactors could theoretically consume more nuclear waste than they produce. That sounds great ‒ until you dig into the detail.

An article in the Bulletin of the Atomic Scientists ‒ co-authored by Allison Macfarlane, a former chair of the US Nuclear Regulatory Commission ‒ states that “molten salt reactors and sodium-cooled fast reactors – due to the unusual chemical compositions of their fuels – will actually exacerbate spent fuel storage and disposal issues.”

The subclass of sodium-cooled fast reactors called ‘integral fast reactors’ (IFRs) could theoretically gobble up nuclear waste and convert it into low-carbon electricity, using a process called pyroprocessing.

But an IFR R&D program in Idaho has left a god-awful mess that the Department of Energy (DOE) is struggling to deal with. This saga is detailed in a 2017 article and a longer report by the Union of Concerned Scientists’ senior scientist Dr. Edwin Lyman, drawing on documents obtained under Freedom of Information legislation.


Dr. Lyman writes: “Pyroprocessing has taken one potentially difficult form of nuclear waste and converted it into multiple challenging forms of nuclear waste. DOE has spent hundreds of millions of dollars only to magnify, rather than simplify, the waste problem. …

The FOIA documents we obtained have revealed yet another DOE tale of vast sums of public money being wasted on an unproven technology that has fallen far short of the unrealistic projections that DOE used to sell the project”.

Some ‘advanced’ reactors could theoretically consume more fissile (explosive) nuclear material than they produce. Instead of contributing to weapons proliferation risks and problems, they could contribute to the resolution of those problems.

That sounds great ‒ until you dig into the detail. After Russia’s floating nuclear plant, the next ‘advanced’ reactor to commence operation may be the Prototype Fast Breeder Reactor (PFBR) in India.


The PFBR has a blanket with thorium and uranium to breed fissile uranium-233 and plutonium respectively ‒ in other words, it will be ideal for weapons production.

India plans to use fast breeder reactors (a.k.a. fast neutron reactors) to produce weapon-grade plutonium for use as the initial ‘driver’ fuel in thorium reactors.

As John Carlson, the former Director-General of the Australian Safeguards and Non-proliferation Office, has repeatedly noted, those plans are highly problematic with respect to weapons proliferation and security.

There’s nothing “cleaner, safer and more efficient” about India’s ‘advanced’ reactor program. On the contrary, it is dangerous and it fans regional tensions and proliferation concerns in South Asia ‒ all the more so since India refuses to allow International Atomic Energy Agency safeguards inspections of its ‘advanced’ nuclear power program.

And if those regional tensions boil over into nuclear warfare, catastrophic climate change will likely result. Fossil fuels provide the surest route to catastrophic climate change; nuclear warfare provides the quickest route.


The ‘advanced’ nuclear power sector isn’t advanced ‒ it is dystopian. And it isn’t advancing ‒ it is regressing.

The Russian government recently clawed back US$4 billion from Rosatom’s budget by postponing its fast neutron reactor program; specifically, by putting on hold plans for what would have been the only gigawatt-scale fast neutron reactor anywhere in the world.

France recently abandoned plans for a demonstration fast reactor. Pursuit of fast reactor technology is no longer a priority in France according to the World Nuclear Association.

And funding is tight because of yet another failing project: a 100-megawatt materials testing reactor that is 500 percent over-budget (and counting) and eight years behind schedule (and counting).

Other fast reactor projects have collapsed in recent years. TerraPower abandoned its plan for a prototype fast reactor in China last year due to restrictions placed on nuclear trade with China by the Trump administration, and requests for US government funding have reportedly received a negative reception.

The US and UK governments have both considered using GE Hitachi’s ‘PRISM’ fast reactor technology to process surplus plutonium stocks ‒ but both governments have rejected the proposal.


Fast reactors and other ‘advanced’ concepts are sometimes called Generation IV concepts.

But fast reactors have been around since the dawn of the nuclear age. They are best described as failed Generation I technology ‒ “demonstrably failed technology” in the words of Allison Macfarlane.

The number of operating fast reactors reached double figures in the 1980s but has steadily fallen and will remain in single figures for the foreseeable future.

Currently, just five fast reactors are operating ‒ all of them described by the World Nuclear Association as experimental or demonstration reactors.


As discussed previously in The Ecologist, most of the handful of small modular reactors (SMRs) under construction are over-budget and behind schedule; there are disturbing connections between SMRs, weapons proliferation and militarism more generally; and about half of the SMRs under construction are intended to be used to facilitate the exploitation of fossil fuel reserves.

SMRs aren’t leading to “cleaner, safer and more efficient energy production”. And SMRs aren’t advancing ‒ projects are falling over left, right and centre:

  • Babcock & Wilcox abandoned its mPower SMR project in the US despite receiving government funding of US$111 million.
  • Westinghouse sharply reduced its investment in SMRs after failing to secure US government funding.
  • China is building a demonstration high-temperature gas-cooled reactor (HTGR) but it is behind schedule and over-budget and plans for additional HTGRs at the same site have been “dropped” according to the World Nuclear Association.
  • MidAmerican Energy gave up on its plans for SMRs in Iowa after failing to secure legislation that would force rate-payers to part-pay construction costs.
  • Rolls-Royce sharply reduced its SMR investment in the UK to “a handful of salaries” and is threatening to abandon its R&D altogether unless massive subsidies are provided by the British government.


Zombie reactors

Fast reactors are demonstrably failed technology. SMRs have failed previously and are in the process of failing yet again. What else is there in the ‘advanced’ nuclear sector?

Fusion? At best, it is decades away and most likely it will forever remain decades away. Two articles in the Bulletin of the Atomic Scientists by Dr. Daniel Jassby ‒ a fusion scientist ‒ comprehensively debunk all of the rhetoric spouted by fusion enthusiasts.

Thorium? There are no fundamental differences between thorium and uranium, so building a thorium fuel cycle from scratch to replace the uranium fuel cycle would be absurd ‒ and it won’t happen.

High-temperature gas-cooled reactors (HTGRs) including the pebble-bed modular reactor sub-type? This zombie concept refuses to die even as  one after another country embarks on R&D, fails, and gives up. As mentioned, China is building a prototype but has dropped plans for further HTGRs.

Paper reactors

Claims that new nuclear technologies are leading to “cleaner, safer and more efficient energy production” could only be justified with reference to concepts that exist only as designs on paper.

As a nuclear industry insider quipped: “We know that the paper-moderated, ink-cooled reactor is the safest of all. All kinds of unexpected problems may occur after a project has been launched.”

There’s nothing that can be said about ‘advanced’ reactor rhetoric that wasn’t said by Admiral Hyman Rickover ‒ a pioneer of the US nuclear program ‒ all the way back in 1953.

“An academic reactor or reactor plant almost always has the following basic characteristics: (1) It is simple. (2) It is small. (3) It is cheap (4) It is light. (5) It can be built very quickly. (6) It is very flexible in purpose (‘omnibus reactor’). (7) Very little development is required. It will use mostly off-the-shelf components. (8) The reactor is in the study phase. It is not being built now.

“On the other hand, a practical reactor plant can be distinguished by the following characteristics: (1) It is being built now. (2) It is behind schedule. (3) It is requiring an immense amount of development on apparently trivial items. Corrosion, in particular, is a problem. (4) It is very expensive. (5) It takes a long time to build because of the engineering development problems. (6) It is large. (7) It is heavy. (8) It is complicated.”

This Author

Dr. Jim Green is the national nuclear campaigner with Friends of the Earth Australia and editor of the Nuclear Monitor newsletter.

Integral Fast Reactors – dispelling the pro nuclear propaganda about them

September 12, 2016

NuClear News August 16  Integral Fast Reactors (IFRs) George Monbiot told the Radio 4’s Today Programme on the 29th July that the “humungous waste problem at Sellafield could be turned into a humungous asset by using a technology such as Integral Fast Reactors (IFR) to turn it into an energy source.” He said “it gets rid of the waste, and according to one estimate could provide all the UK’s energy needs for 500 years.” He said that instead of wasting our money on Hinkley Point C Government should invest in the development of IFRs to “see if we can use it to crack two problems at once – our nuclear waste mountain [and] create a massive source of low carbon energy”. The only problem is, as Professor Catherine Mitchell just had time to point out, it wouldn’t work. To claim that they are proliferation resistant and help “use up waste” is just plain wrong.

The IFR would be a liquid-sodium-cooled fast-neutron reactor. The use of liquid sodium as a coolant has proved to be a huge problem in the past – it catches fire on contact with air. Over the years the world’s leading nuclear technologists have built about three dozen sodium-cooled fast reactors. Of the 22 whose histories are mostly reported, over half had sodium leaks, four suffered fuel damage (including two partial meltdowns), several others had serious accidents, most were prematurely closed, and only six succeeded. As Dr. Tom Cochran of NRDC notes, fast reactor programs were tried in the US, UK, France, Germany, Italy, Japan, the USSR, and the US and Soviet Navies. All failed. After a half-century and tens of billions of dollars, the world has one operational commercial-sized fast reactor (Russia’s BN600) out of 438 commercial power reactors, and it’s not fuelled with plutonium.

IFRs would require an ambitious new nuclear fuel cycle because they would be fuelled with a metallic alloy of uranium and plutonium. In theory they would operate in conjunction with onsite ‘pyroprocessing’ to separate plutonium and other long-lived radioisotopes. Unlike the reprocessing plants currently at Sellafield they wouldn’t separate pure plutonium, but would keep the plutonium mixed with other long-lived radioisotopes.

Its novel technology, replacing solvents and aqueous chemistry of current reprocessing with high-temperature pyrometallurgy and electrorefining, would incur different but major challenges, greater technical risks and repair problems, and speculative but probably worse economics. Reprocessing of any kind makes waste management more difficult and complex, increases the volume and diversity of waste streams, increases by several- to many-fold the cost of nuclear fuelling, and separates bomb-usable material that can’t be adequately measured or protected. In the UK the Government would be unlikely to want to see more plutonium separated so any IFR built here – at least to begin with – would probably just be used to use up our huge stockpile of plutonium. The problem is that the plutonium is stored as plutonium oxide which would have to be converted to plutonium metal probably involving the fluorination of plutonium dioxide, normally with highly corrosive hydrogen fluoride, to produce plutonium fluoride, which is subsequently reduced using high purity calcium metal to produce metallic plutonium and a calcium fluoride slag.

IFRs are often claimed to “burn up nuclear waste” and make its “time of concern … less than 500 years” rather than 10,000-100,000 years or more. That’s wrong: most of the radioactivity comes from fission products, including very long lived isotopes like iodine-129 and technicium-99, and their mix is broadly similar in any nuclear fuel cycle.

IFRs’ wastes may contain less transuranics, but at prohibitive cost and with worse occupational exposures, routine releases, accident and terrorism risks, proliferation, and disposal needs for intermediate- and low-level wastes. It’s simply a dishonest fantasy to claim, that such hypothetical and uneconomic proposals can deal with the humungous waste problem at Sellafield.

It is claimed that IFRs could produce lots of greenhouse-friendly energy and while they’re at it they can ‘eat’ nuclear waste and convert fissile materials, which might otherwise find their way into nuclear weapons, into useful energy. Too good to be true? Sadly, yes. Nuclear engineer Dave Lochbaum from the Union of Concerned Scientists writes: “The IFR looks good on paper. So good, in fact, that we should leave it on paper. For it only gets ugly in moving from blueprint to backyard.”

Integral Fast Nuclear Reactors (IFRs) good only on paper

February 2, 2015

New’ reactor types are all nuclear pie in the sky Ecologist Dr Jim Green 2nd October 2014

“………Integral Fast Reactors (IFRs) are a case in point. According to the lobbyists they are ready to roll, will be cheap to build and operate, couldn’t be used to feed WMD proliferation, etc. The US and UK governments have been analysing the potential of IFRs.

The UK government found that:

  • the facilities have not been industrially demonstrated;
  • waste disposal issues remain unresolved and could be further complicated if it is deemed necessary to remove sodium from spent fuel to facilitate disposal; and
  • little could be ascertained about cost since General Electric Hitachi refuses to release estimates of capital and operating costs, saying they are “commercially sensitive”.

The US government has also considered the use of IFRs (which it calls Advanced Disposition Reactors – ADR) to manage US plutonium stockpiles and concluded that:

  • the ADR approach would be more than twice as expensive as all the other options under consideration;
  • it would take 18 years to construct an ADR and associated facilities; and
  • the ADR option is associated with “significant technical risk”.

Unsurprisingly, the IFR rhetoric doesn’t match the sober assessments of the UK and US governments. As nuclear engineer Dave Lochbaum from the Union of Concerned
Scientists puts it:

“The IFR looks good on paper. So good, in fact, that we should leave it on paper. For it only gets ugly in moving from blueprint to backyard.”……….

The latest confidence trick- PRISM – Power Reactor Innovative Small Module

December 29, 2013

The plutonium stockpile poses enormous problems for the government. Not only is it highly radioactive and an immense potential danger to health, it is also a target for terrorist attacks and for anyone interested in stealing nuclear weapons-grade material.

The NDA’s report to DECC is understood to conclude that the Prism fast reactor is as credible as the two other options based on Mox fuel, even though GE-Hitachi has not yet built a commercial-scale plant for burning plutonium waste. DECC, however, has refused to release the report under a Freedom of Information request 

It is understood that the NDA has been impressed by proposals from GE-Hitachi to build a pair of its Prism fast reactors on the Sellafield site,

Revealed: UK Government’s radical plan to ‘burn up’ UK’s mountain of plutonium 28 Nove 13 A radical plan to dispose of Britain’s huge store of civil plutonium – the biggest in the world – by “burning” it in a new type of fast reactor is now officially one of three “credible options” being considered by the Government, The Independent understands. However, further delays have hit attempts to make a final decision on what to do with the growing plutonium stockpile which has been a recurring headache for successive governments over the past three decades.

The stock of plutonium, one of the most dangerous radioactive substances and the element of nuclear bombs, has already exceeded 100 tonnes and is likely to grow to as much as 140 tonnes by 2020, bolstered by a recent decision to include foreign plutonium from imported nuclear waste.

Ministers had pledged to resolve the plutonium problem in a public consultation but are sitting on a secret report by the Nuclear Decommissioning Authority (NDA) which is believed to confirm that there are now three “credible options” for dealing with the plutonium stored at the Sellafield nuclear reprocessing plant in Cumbria.

The original “preferred option” was to convert the plutonium into a form of nuclear fuel called mixed oxide (Mox) and then to burn this in conventional nuclear reactors. However, serious questions have been raised about this proposal in the light of the expensive failure of a previous £1.4bn Mox plant at Sellafield, which had to be closed in 2011.

Two other options are now on the table, according to the NDA report. One involves a Canadian nuclear power plant called a Candu reactor which will burn a simpler form of Mox fuel. The other more radical proposal is to burn the plutonium directly in a fast reactor built by GE-Hitachi.

The NDA report, which is classified as commercially confidentially, was itself delayed by several months before being submitted in August to the Department of Energy and Climate Change (DECC). The Government’s response to it was supposed to have been published within weeks but has now been delayed until next year – to the consternation of the companies involved in the consultation process.

The plutonium stockpile poses enormous problems for the government. Not only is it highly radioactive and an immense potential danger to health, it is also a target for terrorist attacks and for anyone interested in stealing nuclear weapons-grade material.

The NDA’s report to DECC is understood to conclude that the Prism fast reactor is as credible as the two other options based on Mox fuel, even though GE-Hitachi has not yet built a commercial-scale plant for burning plutonium waste. DECC, however, has refused to release the report under a Freedom of Information request, saying that publishing its contents could jeopardise future commercial negotiations.

The Independent also understands that DECC is seeking the views of the National Security Council, chaired by the Prime Minster David Cameron, before it releases its public position statement on what should be done with the plutonium stockpile – such is the sensitivity of the issue.

One industry insider said that the delay by DECC may in part be due to the intense negotiations over the strike price for electricity generated by the new nuclear power station at Hinckley Point in Somerset. But another reason is the undoubted sensitivity of any future decision over which option to go for when dealing with the growing plutonium problem.

Although the final contract is unlikely to be signed before 2015, both Candu and GE-Hitachi are keen to know whether they are still in the race for tendering against the French company Areva, which was originally hoping win the contract to build a £3bn Mox plant for plutonium disposal without running up against any competitors.

A previous public consultation process led the NDA to recommend the conversion of the plutonium into Mox fuel, which would in itself make it less attractive to terrorists. However, Sellafield has a poor record of producing viable Mox fuel and there are no power stations in the UK willing to burn it given that uranium fuel is much cheaper.

However, over the past two years the NDA has performed a U-turn over another option, which is to burn the plutonium directly in a purpose-built fast reactor. Ironically this was the original intention 40 years ago and the reason for building up a plutonium stockpile in the first place, but Britain’s own fast-reactor programme was abandoned in the 1990s.

It is understood that the NDA has been impressed by proposals from GE-Hitachi to build a pair of its Prism fast reactors on the Sellafield site, which could in theory burn the plutonium stockpile for up to 60 years, making it safe as well as generating carbon-free electricity.

Pyroprocessing -Integral Fast Nuclear Reactors (IFRs) – the dishonest hype

December 29, 2013

Other Department of Energy studies showed that pyroprocessing, by generating large quantities of low-level nuclear waste and contaminated uranium, greatly increases the volume of nuclear waste requiring disposal, contradicting “Pandora’s Promise’s” claim it would reduce the amount of waste.

Scientist: Film hypes the promise of advanced nuclear technology By Edwin Lyman,  CNN November 7, 2013  In his zeal to promote nuclear power, filmmaker Robert Stone inserted numerous half-truths and less-than-half-truths in his new documentary “Pandora’s Promise,”  One of Stone’s more misleading allegations was that scientists at a U.S. research facility, the Argonne National Laboratory, were on the verge of developing a breakthrough technology that could solve nuclear power’s numerous problems when the Clinton administration and its allies in Congress shut the program in 1994 for purely political reasons.

Like the story of Pandora itself, the tale of the integral fast reactor (IFR) — or at least the version presented in the movie — is more myth than reality. In the final assessment, the concept’s drawbacks greatly outweighed its advantages. The government had sound reasons to stanch the flow of taxpayer dollars to a costly, flawed project that also was undermining U.S. efforts to reduce the risks of nuclear terrorism and proliferation around the world…….

What did “Pandora’s Promise” leave out? First, it does not clearly explain what a “fast reactor” is and how it differs from the water-cooled reactors in use today. Most operating reactors use a type of fuel called “low-enriched” uranium, which cannot be used directly to make a nuclear weapon and poses a low security risk. The spent fuel from these water-cooled reactors contains weapon-usable plutonium as a byproduct, but it is very hard to make into a bomb because it is mixed with uranium and highly radioactive fission products.

Fast reactors, on the other hand, are far more dangerous because they typically require fuels made from plutonium or “highly enriched” uranium that can be used to make nuclear weapons.


In fact, fast reactors can be operated as “breeders” that produce more plutonium than they consume. To produce the large quantities of plutonium needed to fuel fast reactors, spent fuel from conventional reactors has to be reprocessed — chemically processed to separate plutonium from the other constituents. Facilities that produce plutonium fuel must have strong protections against diversion and theft. All too often, however, security at such facilities is inadequate.

In the IFR concept, which was never actually realized in practice, reactor-spent fuel would be reprocessed using a technology called pyroprocessing, and the extracted plutonium would be fabricated into new fuel. IFR advocates have long asserted that pyroprocessing is not a proliferation risk because the plutonium it separates is not completely purified.

But a 2008 U.S. Department of Energy review — which confirmed many previous studies — concluded that pyroprocessing and similar technologies would “greatly reduce barriers to theft, misuse or further processing, even without separation of pure plutonium.”

See the Department of Energy review here (PDF)

Other Department of Energy studies showed that pyroprocessing, by generating large quantities of low-level nuclear waste and contaminated uranium, greatly increases the volume of nuclear waste requiring disposal, contradicting “Pandora’s Promise’s” claim it would reduce the amount of waste.

See Union of Concerned Scientists fact sheet (PDF)

And what about Till’s claim that the IFR can’t melt down? It’s false.

“Pandora’s Promise” referenced two successful safety tests conducted in 1986 at a small demonstration fast reactor in Idaho called the Experimental Breeder Reactor-II (EBR-II). But EBR-II operators scripted these tests to ensure the desired outcome, a luxury not available in the real world. Meanwhile, the EBR-II’s predecessor, the EBR-I, had a partial fuel meltdown in 1955, and a similar reactor, Fermi 1 near Detroit, had a partial fuel meltdown in 1966.

See U.S. Department of Energy information posted by the International Atomic Energy Agency (PDF)

Moreover, fast reactors have inherent instabilities that make them far more dangerous than light-water reactors under certain accident conditions, conditions that were studiously avoided in the 1986 dog-and-pony show at EBR-II.

Perhaps the biggest myth in the film is the notion that all U.S. research on fast reactors was terminated.

In fact, the IFR program’s demise was a shutdown in name only. The Department of Energy has continued to fund research and development on fast reactor technology to the tune of tens of millions to hundreds of millions of dollars a year. The IFR Fuel Reprocessing Facility in Idaho shown in the film — in reality, a plant called the Fuel Conditioning Facility — has been operating for decades, essentially as a jobs program, to reprocess spent fuel from the now-defunct EBR-II, despite the system’s serious problems. In 2000, the Department of Energy promised that all the fuel would be processed by around 2007. Three years later, it delayed the projected completion date to 2030.

Till’s assertion in “Pandora’s Promise” that “we know how to do these things” does not square with the difficulties the Department of Energy has encountered in trying to operate this troubled plant.

But if CNN viewers are persuaded by the “Pandora’s Promise” IFR sales pitch and think the federal government should throw even more good taxpayer money after bad, I have two words of advice: Caveat emptor.

The very serious drawbacks of Integral Fast Nuclear Reactors

December 29, 2013

Nuclear energy film overstates positives, underplays negatives By Ralph Cavanagh and Tom Cochran,   CNN November 6, 2013 – ”………The still-unrealized Integral Fast Reactor is the real star of the film, along with the nation of France, whose nuclear generation program is extolled as “one of the most inspiring stories ever” (“the trains are electric powered, they have clean air, and they have the cheapest electricity in Europe”). Nuclear power debates are the only places where you will ever see those at the conservative edge of the political spectrum argue that the United States should reorganize its economy to be more like France.

The Clinton administration killed the Integral Fast Reactor in 1994 because of concern over the potential diversion of the plutonium fuel by terrorists and non-nuclear weapon states of concern. Yet the film’s closing argument is that a “fourth-generation” reactor modeled on the Integral Fast Reactor will sweep the globe, burning waste created by the first three generations and “solving” the nagging problem of long-term disposal of nuclear waste. The film fails to mention that this would take hundreds to thousands of plutonium-fueled reactors operating over hundreds of years, resulting most likely in an increase in the releases of radioactivity to the environment as a consequence of operations by the Integral Fast Reactor’s fuel processing and fabricating facilities.

The film invokes Bill Gates as one of many forward-thinking new investors in nuclear innovation, but surely even Gates would recoil from the Integral Fast Reactor’s poor economic outlook compared to conventional reactors and the financial risks associated with building just one Integral Fast Reactor, let alone a global fleet of them. The film fails to acknowledge that the flagship fast reactor development efforts in the United States, France, Germany, Japan and Italy all failed, and that fast reactors were abandoned by both the U.S. and Soviet navies, hardly a strong selling point for resurrecting the Integral Fast Reactor program………..

Risky new technology proposed as Britain agonises over its Sellafield waste bin

July 21, 2012

It is the task of the Nuclear Decommissioning Authority (NDA) to clean all this up. The plans are to pay the French company Areva, who have proved their technology works, to build a new mixed oxide fuel (MOX) plant.
The other option is to let the US-Japanese GE-Hitachi build a new fast PRISM reactor on the site to burn the plutonium and produce electricity. This is a more elegant engineering option but the reactor is totally unproven and is decades away from completion.

Sellafield: The dangers of Britain’s nuclear dustbin RT, 10 July, 2012“…….Cold war legacy   Behind the razor wire, security guards and public relations campaigns,
Sellafield is home to some of the most radioactive buildings in Europe.
The UK has the largest stockpile of Plutonium anywhere in the world and it’s all stored at Sellafield. Plutonium is used for the manufacture of nuclear weapons and is extremely radioactive with a half-life of 25,000 years. (more…)

Integral Fast Reactors- the nuclear lobby’s new con job

July 21, 2012

In dispraise of Integral Fast Nuclear Reactors  Independent Australia, 5 July 12, Can only nuclear technocrats discuss nuclear issues — leaving the great unwashed out of the debate? Noel Wauchope considers the latest – but not necessarily the greatest  nuclear gizmo — Integral Fast Reactors. “….. It must be reassuring to the nuclear lobby to know that the great unwashed, the hoi polloi, the peasantry, have no idea about the differences between the various types of nuclear reactors now in operation — the Generation 2 and Generation 3 reactors. Let alone the new developing blueprints of Generation IV: Integral Fast Reactors, Lead Cooled Fast Reactors, Molten Salt Reactors, Sodium Cooled Fast reactors, Thorium Liquid Fuel reactors; the peasant mind boggles! And wait, like those old TV commercials – there’s more! – Generation V is now in the minds and on some bits of paper of the nuclear boffins.

Well, the nuclear priesthood is pretty safe in all this. They keep the argument narrowly technical, with pages and pages on the various technicalities of cooling systems, reprocessing of fuel systems, passive safety systems and so on; in other words, they induce in the public a kind of mindless torpor as they dazzle us with science.

At the same time, the nuclear priesthood, like some gifted but autistic child with specialist knowledge in just one area, seems to have little grasp of other issues concerning nuclear power — blinkered as they are in their apparent view that the technicalities are the whole story.  This is the case with their latest propaganda for the ‘Integral Fast Reactor’ or IFR. (more…)

UK’s plutonium problem – “fast nuclear Reactors” are not the solution

July 20, 2012

Ultimately, however, the core problem may be that such new reactors don’t eliminate theuclear waste that has piled up so much as transmute it. Even with a fleet of such fast reactors, nations would nonetheless require an ultimate home for radioactive waste, one reason that a 2010 M.I.T. report on spent nuclear fuel dismissed such fast reactors.  

Can Fast Reactors Speedily Solve Plutonium Problems? The U.K. is grappling with how to get rid of weapons-grade plutonium and may employ a novel reactor design to consume it Scientific American By David Biello  | March 21, 2012 The U.K. has nearly 100 metric tons of plutonium—dubbed “the element from hell” by some—that it doesn’t know what to do with. The island nation does not need the potent powder to construct more nuclear weapons, and spends billions of British pounds to ensure that others don’t steal it for that purpose. The unstable element, which will remain radioactive for millennia, is the residue of ill-fated efforts to recycle used nuclear fuel.

One solution under consideration is to recycle the plutonium yet further—by using it as fuel in a pair of new, so-called “fast” reactors. Such nuclear reactors can actually “consume” plutonium via fission (transforming it into other forms of nuclear waste that are not as useful for weapons). The U.K. is considering a plan to build two of General Electric’s PRISM fast reactors, the latest in a series of fast-reactor designs that for several decades have attempted with mixed success to handle plutonium and other radioactive waste from nuclear power. (more…)