Archive for the ‘– decommission reactor’ Category

Captiol Hill briefing paper on the need for autopsies at decommissioning reactors 

October 9, 2018

http://www.beyondnuclear.org/nuclear-reactors-whatsnew/2018/7/11/captiol-hill-briefing-paper-on-the-need-for-autopsies-at-dec.html

LINK TO FULL REPORT    

Decommissioning nuclear power stations need an “autopsy” to verify and validate safety margins projected for operating reactor license extensions  

                                                    Summary

The Issue

The Nuclear Energy Institute (NEI), the lead organization for the U.S. commercial nuclear power industry, envisions the industry’s “Bridge to the Future” through a series of reactor license renewals from the original 40-year operating license; first by a 40 to 60-year extension and then a subsequent 60 to 80-year extension. Most U.S. reactors are already operating in their first 20-year license extension and the first application for the second 20-year extension (known as the “Subsequent License Renewal”) is before the U.S. Nuclear Regulatory Commission (NRC) for review and approval. NEI claims that there are no technical “show stoppers” to these license extensions. However, as aging nuclear power stations seek to extend their operations longer and longer, there are still many identified knowledge gaps for at least 16 known age-related material degradation mechanisms (embrittlement, cracking, corrosion, fatigue, etc.) attacking irreplaceable safety-related systems including miles of electrical cable, structures such as the concrete containment and components like the reactor pressure vessel. For example, the national labs have identified that it is not known how radiation damage will interact with thermal aging. Material deterioration has already been responsible for near miss nuclear accidents.  As such, permanently closed and decommissioning nuclear power stations have a unique and increasingly vital role to play in providing access to still missing data on the impacts and potential hazards of aging for the future safety of dramatic operating license extensions.

The NRC and national laboratories document that a post-shutdown autopsy of sorts to harvest, archive and test actual aged material samples (metal, concrete, electrical insulation and jacketing, etc.) during decommissioning provides unique and critical access to obtain the scientific data for safety reviews of the requested license extensions. A Pacific Northwest National Laboratory (PNNL) 2017 report concludes, post-shutdown autopsies are necessary for “reasonable assurance that systems, structures, and components (SSCs) are able to meet their safety functions. Many of the remaining questions regarding degradation of materials will likely require[emphasis added]a combination of laboratory studies as well as other research conducted on materials sampled from plants (decommissioned or operating).” PNNL reiterates, “Where available, benchmarking can be performed using surveillance specimens. In most cases, however, benchmarking of laboratory tests will require(emphasis added)harvesting materials from reactors.” In the absence of “reasonable assurance,” it is premature for licensees to complete applications without adequate verification and validation of projected safety margins for the 60 to 80-year extension period.

Decommissioning is not just the process for dismantling nuclear reactors and remediating radioactive contamination for site restoration. Decommissioning has an increasingly important role at the end-of-reactor-life-cycle for the scientific scrutiny of projected safety margins and potential hazards at operating reactors seeking longer and longer license extensions.

The Problem

After decades of commercial power operation,the nuclear industry and the NRC have done surprisingly little to strategically harvest, archive and scientifically analyze actual aged materials. Relatively few samples of real time aged materials have been shared with the NRC.  The NRC attributes the present dearth of real time aged samples to “harvesting opportunities have been limited due to few decommissioning plants.” However, ten U.S. reactors have completed decommissioning operations to date and 20 units are in the decommissioning process. More closures are scheduled to begin in Fall 2018.  A closer look raises significant concern that the nuclear industry is reluctant to provide access to decommissioning units for sampling or collectively share this cost of doing business to extend their operating licenses. Key components including severely embrittled reactor pressure vessels were promptly dismantled by utilities and buried whole without autopsy. Many permanently closed reactors have been placed in “SAFSTOR,” defueled and mothballed “cold and dark” for up to 50 years without the material sampling to determine their extent of condition and the impacts of aging. Moreover, the NRC is shying away from taking reasonable regulatory and enforcement action to acquire the requested samples for laboratory analysis after prioritizing the need for a viable license extension safety review prior to approval. Meanwhile, the nuclear industry license extension process is pressing forward.

David Lochbaum, a recognized nuclear safety engineer in the public interest with the Union of Concerned Scientists, identifies that nuclear research on the impacts and hazards of age degradation in nuclear power stations presently relies heavily on laboratory accelerated aging—often of fresh materials—and computer simulation to predict future aging performance and potential consequences during license extension.  Lochbaum explains that “Nuclear autopsies yield insights that cannot be obtained by other means.” Researchers need to compare the results from their time-compression studies with results from tests on materials actually aged for various time periods to calibrate their analytical models.According to Lochbaum, “Predicting aging effects is like a connect-the-dots drawing. Insights from materials harvested during reactor decommissioning provide many additional dots to the dots provided from accelerated aging studies. As the number of dots increases, the clearer the true picture can be seen. The fewer the dots, the harder it is to see the true picture.

The Path Forward

1) Congress, the Department of Energy (DOE) and the NRC need to determine the nuclear industry’s fair share of autopsy costs levied through collective licensing fees for strategic harvesting during decommissioning and laboratory analysis of real time aged material samples as intended to benefit the material performance and safety margins of operating reactors seeking license extensions, and;

2) As NRC and the national laboratories define the autopsy’s stated goal as providing “reasonable assurance that systems, structures, and components (SSCs) are able to meet their safety functions” for the relicensing of other reactors, the NRC approval process for Subsequent License Renewal extensions should be held in abeyance pending completion of comprehensive strategic harvesting and conclusive analysis as requested by the agency and national laboratories, and;

3) Civil society can play a more active role in the independent oversight and public transparency of autopsies at decommissioning reactor sites such as through state legislated and authorized nuclear decommissioning citizen advisory panels.

Advertisements

The nuclear decommissioning process

April 2, 2018
Why decommissioning South Africa’s Koeberg nuclear plant won’t be easy  The Conversation,  Hartmut Winkler  Professor of Physics, University of Johannesburg, January 26, 2018  

“……..There are three stages in the rehabilitation of a nuclear facility.

  1. The plant must be dismantled. This is complicated because most of the material in and around the plant is radioactive to varying degrees and therefore dangerous to anything exposed to it. Radioactivity reduces with time, but for some isotopes commonly found in nuclear waste, the drop in radiation levels can be very slow. Because of this a plant will only be dismantled years after it’s been switched off.
  2. The dangerous nuclear waste, or high level waste must be reprocessed. Most of the material stays dangerous for decades but some isotopes retain high levels of radiation levels for thousands of years. A portion of nuclear waste can be converted into reusable or less radioactive forms through nuclear engineering processes. These processes are complex and there are only a few facilities in the world that can perform them. This means that South Africa’s high level waste will have to be transported overseas. Reprocessing facilities include La Hague in France and the Russian Mayak site, thought to be responsible for the 2017 ruthenium leak incident.
  3. The remaining nuclear waste must be secured in storage, virtually forever. This needs an isolated site that can’t be damaged by natural disasters or other processes that could cause radioactive material to seep into the surrounding environment, especially ground water. This final storage need is a massive headache worldwide. An example is the German Gorleben final repository site. It’s been the scene of protests for decades, preventing any further storage of waste on the site.

There are a handful of cases where the first two stages have been completed, typically over periods of ten years. But completing the final storage phase of nuclear waste hasn’t been achieved for any former plants. Their most hazardous waste is still in temporary storage, sometimes even on site……… https://theconversation.com/why-decommissioning-south-africas-koeberg-nuclear-plant-wont-be-easy-89888

The Era of Nuclear Decommissioning

April 2, 2018

Nuclear power in crisis: we are entering the Era of Nuclear Decommissioning, Energy Post,  by Jim Green  “…………The Era of Nuclear Decommissioning     The ageing of the global reactor fleet isn’t yet a crisis for the industry, but it is heading that way. In many countries with nuclear power, the prospects for new reactors are dim and rear-guard battles are being fought to extend the lifespans of ageing reactors that are approaching or past their design date.

Perhaps the best characterisation of the global nuclear industry is that a new era is approaching ‒ the Era of Nuclear Decommissioning ‒ following on from its growth spurt from the 1960s to the ’90s then 20 years of stagnation.

The Era of Nuclear Decommissioning will entail:

  • A slow decline in the number of operating reactors.
  • An increasingly unreliable and accident-prone reactor fleet as ageing sets in.
  • Countless battles over lifespan extensions for ageing reactors.
  • An internationalisation of anti-nuclear opposition as neighbouring countries object to the continued operation of ageing reactors (international opposition to Belgium’s ageing reactors is a case in point ‒ and there are numerous other examples).
  • Battles over and problems with decommissioning projects (e.g. the UK government’s £100+ million settlement over a botched decommissioning tendering process).
  • Battles over taxpayer bailout proposals for companies and utilities that haven’t set aside adequate funds for decommissioning and nuclear waste management and disposal. (According to Nuclear Energy Insider, European nuclear utilities face “significant and urgent challenges” with over a third of the continent’s nuclear plants to be shut down by 2025, and utilities facing a €118 billion shortfall in decommissioning and waste management funds.)
  • Battles over proposals to impose nuclear waste repositories and stores on unwilling or divided communities.

The Era of Nuclear Decommissioning will be characterised by escalating battles (and escalating sticker shock) over lifespan extensions, decommissioning and nuclear waste management. In those circumstances, it will become even more difficult than it currently is for the industry to pursue new reactor projects. A feedback loop could take hold and then the nuclear industry will be well and truly in crisis ‒ if it isn’t already.

Editor’s Note

Dr Jim Green is the editor of the Nuclear Monitor newsletter, where a longer version of this article was originally published.

http://energypost.eu/nuclear-power-in-crisis-welcome-to-the-era-of-nuclear-decommissioning/

 

Risky work: dismantling a nuclear reactor

July 24, 2017

Here’s what dismantling a nuclear reactor involves: Robots, radiation, risk  IEA says about 200 nuclear reactors around the world will be shut down over the next quarter century http://www.business-standard.com/article/international/here-s-what-dismantling-a-nuclear-reactor-involves-robots-radiation-risk-117061200298_1.html   Reuters  |  Muelheim-Kaerlich, Germany June 12, 2017 As head of the nuclear reactor, Thomas Volmar spends his days plotting how to tear down his workplace. The best way to do that, he says, is to cut out humans.

About 200 nuclear reactors around the world will be shut down over the next quarter century, mostly in Europe, according to the Energy Agency. That means a lot of work for the half a dozen companies that specialise in the massively complex and dangerous job of dismantling plants.

Those firms — including Areva, Rosatom’s Engineering Services, and Toshiba’s — are increasingly turning away from humans to do this work and instead deploying robots and other new technologies.

That is transforming an industry that until now has mainly relied on electric saws, with the most rapid advances being made in the highly technical area of dismantling a reactor’s core — the super-radioactive heart of the plant where the nuclear reactions take place.

The transformation of the sector is an engineering one, but companies are also looking to the new technology to cut time and costs in a competitive sector with slim margins.

Dismantling a plant can take decades and cost up to 1 billion euros ($1.1 billion), depending on its size and age. The cost of taking apart the plant in will be about 800 million euros, according to sources familiar with the station’s economics.

Some inroads have already been made: a programmable robot arm developed by has reduced the time it takes to dismantle some of the most contaminated components of a plant by 20-30 per cent compared with conventional cutting techniques.

For and rival Westinghouse, reactor dismantling is unlikely to make an impact on the dire financial straits they are mired in at present as it represents just a small part of their businesses, which are dominated by plant-building.

But it nonetheless represents a rare area of revenue growth; the global market for decommissioning services is expected to nearly double to $8.6 billion by 2021, from $4.8 billion last year, according to research firm MarketsandMarkets. Such growth could prove important for the two companies should they weather their current difficulties.

“We’re not talking about the kind of margins is making on its iPhone,” said Thomas Eichhorn, head of Areva’s German dismantling activities. “But it’s a business with a long-term perspective.”

When reactors were built in the 1970s, they were designed to keep radiation contained inside at all costs, with little thought given to those who might be tearing them down more than 40 years later.

First, engineers need to remove the spent nuclear fuel rods stored in reactor buildings — but only after they’ve cooled off. At this took about two years in total. Then peripheral equipment such as turbines need to be removed, a stage has begun and which can take several years.

Finally, the reactor itself needs to be taken apart and the buildings demolished, which takes about a decade. Some of the most highly contaminated components are cocooned in concrete and placed in iron containers that will be buried deep underground at some point.

Robots under water

While the more mundane tasks, including bringing down the plants’ outer walls, are left to construction groups such as Hochtief, it’s the dismantling of the reactor’s core where more advanced skills matter — and where the use of technology has advanced most in recent years.

Enter companies such as Areva, Westinghouse, Nukem Technologies, as well as GNS, owned by Germany’s four operators. They have all begun using robots and software to navigate their way into the reactor core, or pressure vessel.

“The most difficult task is the dismantling of the reactor pressure vessel, where the remaining radioactivity is highest,” said Volmar, who took charge of the RWE-owned plant two years ago. “We leave this to a specialised expert firm.”

The vessel — which can be as high as 13 metres and weigh up to 700 tonnes — is hidden deep inside the containment building that is shaped like a sphere to ensure its 30-centimetre thick steel wall is evenly strained in case of an explosion.

The 2011 Fukushima disaster and the Chernobyl accident of 1986 are imprinted in the world’s consciousness as examples of the catastrophic consequences of the leakage of radioactive material.

France’s recently won the contract to dismantle the pressure vessel internals at Vattenfall’s 806 megawatts (Mw) Brunsbuettel in Germany, which includes an option for the Swedish utility’s 1,402 MW Kruemmel site.

There, the group will for the first time use its new programmable robot arm. It hopes this will help it outstrip rivals in what is the world’s largest dismantling market following Germany’s decision to close all its last nuclear plants by 2022, in response to the Fukushima disaster.

operates under water because the liquid absorbs radiation from the vessel components — reducing the risk of leakage and contamination of the surrounding area. The chamber is flooded before its work begins.

Areva’s German unit invests about 5 per cent of its annual sales, or about 40 million euros, in research and development, including in-house innovation such as  By comparison, the world’s 1,000 largest corporate R&D spenders, on average, spent 4.2 per cent last year, according to PwC.

The robot arm technology helped beat by winning tenders to dismantle pressure vessel internals at EnBW’s Philippsburg 2 and Gundremmingen 2 blocks, industry sources familiar with the matter said.

and both declined to comment. — whose US business filed for bankruptcy in March — did not respond to repeated requests for comment. Time and money

Britain’s OC Robotics has built the LaserSnake2, a flexible 4.5-metre snake arm, which can operate in difficult spaces and uses a laser to increase cutting speeds — thus reducing the risk of atmospheric contamination. It was tested at the Sellafield nuclear site in west Cumbria last year.

This followed France’s Alternative Energies and Atomic Energy Commission (CEA), whose laser-based dismantling technology generates fewer radioactive aerosols — a key problem during cutting — than other technologies.

The complexity of the dismantling process is also giving rise to modelling software that maps out the different levels of radiation on plant parts, making it easier to calculate the most efficient sequence of dismantling – the more contaminated parts are typically dealt with first – and gives clarity over what safety containers will be needed to store various components.

GNS, which is jointly owned by E.ON, RWE, and Vattenfall, is currently helping to dismantle the German Neckarwestheim 1 and Philippsburg 1 reactors, using its software to plan the demolition.

The company also hopes to supply its software services for the dismantling of PreussenElektra’s Isar 1 reactor, which is being tendered, and aims to expand to other European countries.

“Two things matter: time and money,” said Joerg Viermann, head of sales of waste management activities at 

“The less I have to cut, the sooner I will be done and the less I will spend.”

100 billion pound cost of decommissioning Europe’s old nuclear power stations

November 21, 2016
Standard and Poor’s: dismantling Europe’s old nuclear power plants will run up a hundred billion  pound bill for EDF EON RWE and others 
http://www.cityam.com/229161/standard-poors-dismantling-europes-old-nuclear-power-plants-will-run-up-a-eur100bn-bill-for-edf-eon-rwe-and-others  Dismantling Europe’s old, uneconomic power plants will impose heavy costs on Europe’s biggest operators, something which could strain their balance sheets, and hit their credit rating.

Nuclear liabilities of the largest eight nuclear plant operators in Europe totaled €100bn at the end of last year, representing around 22 per cent of their aggregate debt, according to credit rating agency Standard & Poor’s.

Operators are legally responsible for decommissioning nuclear power plants, a process which can take several decades to implement, meaning the associated costs are high. Europe’s main nuclear operators include France’s EDF, Germany’s E.ON and RWE. They are legally responsible for decommissioning nuclear power plants, a process which can take several decades to implement, meaning the associated costs are high.

While the analysis by S&P treats nuclear liabilities as debt-like obligations, it recognises that several features differentiate them from traditional debt. But given the size of the liabilities against a company’s debt, they can impact a company’s credit metrics, and their credit rating.

The report noted that a company’s nuclear provisions are difficult to quantify, as well as cross compare, because accounting methods vary between different countries.

It also foresees many operational challenges ahead, including a reality check on costs and execution capabilities.

Massive tomb for San Onofre’s spent nuclear fuel

September 13, 2016

At San Onofre, spent nuclear fuel is getting special tomb Orange County Register, Aug. 28, 2016 ,By TERI SFORZA  “……..Once, San Onofre was a marvel of modern engineering – splitting atoms to create heat, boiling water to spin turbines and creating electricity that fulfilled 18 percent of Southern California’s demand. Now, it’s a demolition project of mind-boggling proportions, overseen by a dozen government agencies.

It’s expected to cost $4.4 billion, take 20 years and leave millions of pounds of spent nuclear fuel on the scenic bluff beside the blue Pacific until 2049 or so, because the federal government has dithered for generations on finding a permanent repository.

In this vacuum, contractors from Holtec International – one of only a handful of companies licensed by the Nuclear Regulatory Commission to do dry-cask radiation storage in the U.S. – are at work. Construction of the controversial “concrete monolith” to protect San Onofre’s stranded waste has begun, over the protests of critics who decry a “beachfront nuclear waste dump.”

THE MONOLITH

The reinforced concrete pad that will support the monolith is finished.

Last week, Holtec workers used cranes and trucks to maneuver the first of 75 giant tubes into place atop it. When those tubes are bolted in, concrete will be poured up to their necks, and they’ll be topped off with a 24,000-pound steel-and-concrete lid. Earth will be piled around it so that it looks something like an underground bunker.

Southern California Edison, which operates the plant, would not share the Holtec contract or reveal its price tag, but San Onofre’s owners have recovered more than $300 million from the federal government for its failure to dispose of nuclear waste, which is why dry-cask storage must be built in the first place. San Onofre’s decommissioning plan sets aside $1.27 billion for future spent fuel management.

This is one of the first newly licensed Hi-Storm Umax dry-cask storage systems Holtec is building in the United States. Once it’s complete – expected to be late next year – workers will begin the deliberate and delicate dance of removing all spent fuel from cooling pools beside each reactor.

The iconic twin domes you see from the highway and the beach don’t reveal their enormity. They stand as tall as a 13-story building, and the adjacent pools holding their spent fuel are 25 feet wide, 60 feet long, about 40 to 50 feet deep and hold a half-million gallons of water.

When Southern California Edison begins removing the 2,668 fuel assemblies chilling there, bays to those enormous pools will open. Holtec storage canisters will be lowered in. Underwater, 37 spent fuel assemblies will be loaded into each canister and capped. The canister will be slipped into a “transfer cask,” lifted from the pool and drained.

Then it will be loaded onto a truck, driven a few hundred yards to the Umax and lowered into one of those 75 tubes. The waste-filled canister will remain inside. The transfer cask will be removed. The tube will be capped.

This will be repeated more than 70 times, until all the fuel in the more vulnerable pools is entombed in more stable dry-cask storage. That’s slated to be done by mid-2019.

TECHNOLOGY

The system will become something of a real-time experiment: Edison is partnering with the Electric Power Research Institute to develop inspection techniques to monitor the casks as they age. The casks’ integrity over time, while holding hotter “high burn-up” fuel, is a major concern of critics.

“Burn-up” – i.e., the amount of uranium that undergoes fission – has increased over time, allowing utilities to suck more power out of nuclear fuel before replacing it, federal regulators say. It first came into wide use in America in the latter part of the last century, and how it will behave in short-term storage containers (which, pending changes in U.S. policy on nuclear cleanup, must be used for longer-term storage) remains a topic of debate……..

ry-cask technology is not new, he said. Nuclear power plants in the U.S. have used it since 1986, and an analysis by the Electric Power Research Institute found that it would take at least 80 years before a severe crack could form in a dry storage canister.

The Umax uses the most corrosion-resistant grade of stainless steel; its design exceeds California earthquake requirements, and it protects against hazards such as water, fire or tsunamis.

Critics cast skeptical eyes on those claims.

They don’t disagree that dry storage is safer than the spent fuel pools, but activist Donna Gilmore says officials gloss over the potential for serious cracking – a bigger risk in a moist, salty, oceanfront environment such as San Onofre.

Once a crack starts, it would continue to grow through the wall of the canister, undetected, until it leaked radiation, Gilmore said.

Other countries use thicker-walled casks than those licensed in America, and she believes we should, too.

EYES FORWARD

What everyone wants is to remove the ensconced “stranded waste” from San Onofre as soon as possible, and the only way that can happen is if the federal government takes action.

Palmisano said energy is best expended pushing that forward, not arguing over canisters.

On that front, he is cautiously optimistic.

In January, the U.S. Department of Energy launched a new push to create temporary nuclear waste storage sites in regions eager for the business, currently in West Texas and New Mexico. Several of those could be up and running while the prickly question of coming up with a permanent site is hashed out.

There could be a plan, and a place, for this waste within the next 10 years, Palmisano said – but that would require congressional action, which in turn would likely require much prodding from the public.

“We are frustrated and, frankly, outraged by the federal government’s failure to perform,” he said. “I have fuel I can ship today, and throughout the next 15 years. Give me a ZIP code and I’ll get it there.”…..http://www.ocregister.com/articles/nuclear-727227-fuel-storage.html

The massive and growing costs of decommissioning reactors, and nuclear waste disposal

September 12, 2016

Sticker Shock: The Soaring Costs Of Germany’s Nuclear Shutdown, Yale Environment 360 25 JUL 2016: REPORT  German Chancellor Angela Merkel’s 2011 decision to rapidly phase out the country’s 17 nuclear power reactors has left the government and utilities with a massive problem: How to clean up and store large amounts of nuclear waste and other radioactive material. by joel stonington 26 july 16  The cavern of the salt mine is 2,159 feet beneath the surface of central Germany. Stepping out of a dust-covered Jeep on an underground road, we enter the grotto and are met by the sound of running water — a steady flow that adds up to 3,302 gallons per day.

“This is the biggest problem,” Ina Stelljes, spokesperson for the Federal Office for Radiation Protection, tells me, gesturing to a massive tank in the middle of the room where water waits to be pumped to the surface.

The leaking water wouldn’t be an issue if it weren’t for the 125,000 barrels of low- and medium-level nuclear waste stored a few hundred feet below. Most of the material originated from 14 nuclear power plants, and the German government secretly moved it to the mine from 1967 until 1978. For now, the water leaking into the mine is believed to be contained, although it remains unclear if water has seeped into areas with waste and rusted the barrels inside.

The mine — Asse II — has become a touchstone in the debate about nuclear waste in the wake of German Chancellor Angela Merkel’s 2011 decision to end the use of nuclear power following Japan’s Fukushima disaster. The ongoing closures have created a new urgency to clean up these nuclear facilities and, most importantly, to find a way to safely store the additional radioactive waste from newly decommissioned nuclear reactors. Nine of the country’s 17 nuclear power reactors have been shut down and all are expected to be phased out by 2022.

In addition to Asse II, two other major lower-level nuclear waste sites exist in Germany, and a third has been approved. But the costs associated with nuclear waste sites are proving to be more expensive, controversial, and complex than originally expected.

And Germany still hasn’t figured out what to do with the high-level waste — mostly spent fuel rods — that is now in a dozen interim storage areas comprised of specialized warehouses near nuclear power plants. Any future waste repository will have to contain the radiation from spent uranium fuel for up to a million years.

Given the time frames involved, it’s not surprising that no country has built a final repository for high-level waste. In Germany, a government commission on highly radioactive nuclear waste spent the last two years working on a 700-page report, released this month, that was supposed to recommend a location. Instead, the report estimated that Germany’s final storage facility would be ready “in the next century.” Costs are expected to be astronomical.

“Nobody can say how much it will cost to store high-level waste. What we know is that it will be very costly – much higher costs can be expected than [what] the German ministry calculates,” said Claudia Kemfert, head of energy, transportation, and environment at the German Institute for Economic Research. The exact number, she said, “cannot be predicted, since experience shows that costs have always been higher than initially expected. ”

At the Asse II mine, roughly $680 million has been spent in the six years since the cleanup began, and the price tag for operations last year totaled $216 million. A 2015 report by Germany’s Environment Ministry noted, “There are currently no technical plans available for the envisaged waste recovery project which would allow a reliable estimate of the costs.”

No one expects to start moving the barrels at the mine until 2033, and estimates of finishing the process extend to 2065. Total costs for moving the waste to a future storage site will almost certainly be in the billions of dollars, with current estimates of just disposing of the recovered waste at $5.5 billion.

The waste issue is one reason nuclear power has been so controversial in Germany and why there is broad support among the public for phasing it out, with three-quarters of the German population saying they are in favor of Merkel’s decision, according to a survey this year by the Renewable Energy Hamburg Cluster.

“Nuclear in Germany is not popular,” Kemfert said. “Everybody knows it is dangerous and causes a lot of environmental difficulties. Nuclear has been replaced by renewables – we have no need for nuclear power any more.”…………..

With both nuclear waste storage and decommissioning, governments and power companies around the world have often opted for halfway solutions, storing waste in temporary depots and partially decommissioning plants. Worldwide, 447 operational nuclear reactors exist and an additional 157 are in various stages of decommissioning. Just 17 have been fully decommissioned.

In Europe, a recent report by the European Union Commission estimated that funds set aside for waste storage and decommissioning of nuclear plants in the EU’s 16 nuclear nations have fallen short by $137 billion. Dealing with nuclear waste in the United Kingdom is also a highly charged issue. At one location — a former weapons-manufacturing, fuel-reprocessing, and decommissioning site called Sellafield — the expected cleanup cost increased from $59 billion in 2005 to $155 billion in 2015. ……

despite recently completing a new plant, the United States is also struggling with decommissioning. The cost estimates of shuttering U.S. nuclear plants increased fourfold between 1988 and 2013, according toBloomberg News. Many governments are slowly starting to realize how much those costs have been underestimated.

As Antony Froggatt, a nuclear expert and researcher at Chatham House — a London-based think tank— put it, “The question is, how do you create a fair cost to cover what will happen far into the future?”  http://e360.yale.edu/feature/soaring_cost_german_nuclear_shutdown/3019/

Who pays for nuclear waste disposal? The German experience

September 12, 2016

Sticker Shock: The Soaring Costs Of Germany’s Nuclear Shutdown, Yale Environment 360 25 JUL 2016: REPORT “…….In Germany, negotiations with utilities over who will pay the denuclearization costs have often centered on how much the utilities can afford. The four nuclear utilities in Germany – publicly-traded RWE; E.ON; EnBW, which is majority publicly-owned; and Swedish-owned Vattenfall – are struggling economically as decentralized wind and solar power have undercut wholesale electricity prices and eaten into profits. Last year, E.ON, Germany’s largest utility, lost $7.7 billion.

The four companies have already set aside $45 billion for decommissioning nuclear power plants. But in April, Germany’s Commission to Review the Financing for the Phase-Out of Nuclear Energy recommended that the utilities pay an additional $26.4 billion into a government-controlled fund meant to cover the costs of long-term storage of nuclear waste.

The utilities were unhappy with the commission’s conclusions and released a joint statement saying $26.4 billion would “overburden energy companies’ economic capabilities.” Even so, few experts expect those sums to cover the total eventual costs.

“Some billions now are better than making them bankrupt,” said Michael Mueller, who chairs a government commission on highly radioactive nuclear waste. “So, it’s a compromise that had to be made.”

The utilities are clear about where they see the responsibility: “The temporary and final storage of nuclear waste in Germany is an operative task of the German government, which is politically responsible for this,” the utilities said in a statement. Indeed, if the commission’s recommendation becomes law, then the German government will be on the hook for any storage costs beyond the $26.4 billion paid by the utilities.

“Asse II shows us that radioactive waste storage is a complex problem that is not just about dumping it somewhere,” said Jan Haverkamp, a nuclear energy expert at Greenpeace. “There are many open questions, and those questions are going to lead to a lot more costs………” http://e360.yale.edu/feature/soaring_cost_german_nuclear_shutdown/3019/

Nuclear power stations’ hidden costs

September 12, 2016

The scary hidden cost of building a nuclear power stationhttp://www.rdm.co.za/business/2016/06/13/the-scary-hidden-cost-of-building-a-nuclear-power-station
Even assuming that SA can find the funds, we would do well to take into account the non-negotiable costs of decommissioning and waste management  BRENDA MARTIN
13 JUNE 2016 
Consider decommissioning costs before committing to new nuclear power investment

As South Africa prepares to invest in new nuclear power, we may do well to consider the other end of such investment: decommissioning. In the north of Germany, the Greifswald nuclear power plant (also known as Lubmin) has been undergoing the process of decommissioning since 1990. Before its closure, with a total planned capacity of 8 x 400MW plant built, but with only 5 reactors fuelled, Lubmin was to be the largest nuclear power station in East Germany prior to reunification. The reactors were of the VVER-440/V-230 type, or so-called second generation of Soviet-design. When it is concluded, the full process of decommissioning at Lubmin will have taken 30 years from first shutdown.  In 1990 the company responsible for decommisioning this 8 x 400MW nuclear power plant, Energiewerke Nord, estimated a cost of half a billion DM per unit. Later this estimate was adjusted to 3.2 billion/unit. Today 4.1 billion/unit is a conservative final estimate (Energiewerke Nord, 2016).

More recently, early in 2012, following the Fukushima disaster in March 2011, the German government announced the immediate withdrawal of the operating licenses of eight German nuclear power plants and revived its plans to phase out nuclear power — by 2022. As this process unfolds, it will be possible to move beyond speculation, to actual data on costs, process and skills required for decommissioning.

What is involved in decommissioning a nuclear power plant?

Nuclear decommissioning is the process whereby a nuclear power plant site as a whole is dismantled to the point that it no longer requires measures for radiation protection to be applied. It is both an administrative and a technical process, including clean-up of all radioactive materials and then progressive demolition of the plant. Once a facility is fully decommissioned it should present no danger of radiation exposure. After a facility has been completely decommissioned, it is released from regulatory control and the plant licensee is no longer responsible for its safety.

The costs of decommissioning are spread over the lifetime of a facility and given that most nuclear power plants operate for over 40 years, funds need to be saved in a decommissioning fund to ensure that future costs are provided for.

What are the current estimates for nuclear power plant decommissioning?

This year, on April 28, an independent commission appointed by the German government (Kommission zur Überprüfung des Kernenergieausstiegs, KFK) presented its recommendations to the Ministry of Economics and Energy. The commission recommended that reactor owners — EnBW, EOn, RWE and Vattenfall — pay an initial sum of €23.3-billion ($26.4-billion) over the next few years, into a state-owned fund set up to cover the costs of decommissioning of the plants and managing radioactive waste. This sum includes a “risk premium” of around 35% to close the gap between provisions and actual costs.

According to the ministry, there will be approximately 10 500 tonnes of used fuel from 23 nuclear power plants, which will need to be stored in about 1 100 containers. A further 300 containers of high- and intermediate-level waste are also expected from the reprocessing of used fuel, as well as 500 containers of used fuel from research and demonstration reactors. In addition, some 600 000 cubic meters of low- and intermediate-level waste will need to be disposed of, including waste from industry, medicine and research.

Just before KFK started its work in October 2015, a study conducted by German audit firm Warth & Klein Grant Thornton for the Ministry of Economics and Energy had estimated the following costs for decommissioning 23 nuclear power plants, in 2014 money i.e. the cost if plants were to be decommissioned in 2014:

  • Closure and decommissioning:    €19.7-billion
  • Containers, transport:                     €9.9-billon
  • Intermediate storage:                     €5.8-billion
  • Final low heat waste storage:       €3.75-billion
  • Final high active waste storage:   €8.3-billion

i.e. a total of €47.5-billion.

However, decommissioning of all of Germany’s 23 nuclear power plants will not be undertaken at the same time. Most costs will be incurred in the future. Annexure 9 of the Warth & Klein Grant Thornton report provides an estimate of likely decommissioning costs when taking into account projected interest rate and inflation scenarios, as well as various likely nuclear-specific cost increases. Their conclusion? Total costs of decommissioning all nuclear power plants in Germany could reach up to €77.4-billion.

Given these emerging figures, even assuming that SA can find the necessary funds needed for new nuclear power investment, we would do well to take into account the increasingly known, non-negotiable related costs of decommissioning and waste management — of both old and new nuclear-related investment.

Ways to decommission nuclear reactors

June 11, 2016

US nuclear industry’s plan thanks to NRC: let taxpayers carry the can for closed power plants, Ecologist Linda Pentz Gunter13th May 2016 “…….There are currently three decommissioning options when a reactor closes. They are known by apparent acronyms that are really just capitalized slogans, masking the flaws behind all three.

DECON refers to prompt dismantlement. This sounds promising for all sides, dispensing with the whole decommissioning process and its attendant costs, headaches and liabilities in about 10 years.

In principle DECON is supported by environmental and anti-nuclear groups, but with one giant caveat: the radioactive waste that remains on site after decommissioning of the reactor, must be adequately safeguarded.

Under the current regulatory scheme, the NRC allows the licensee to offload the irradiated nuclear fuel from the spent fuel storage pools into dry storage casks. These are not adequately protected from security threats. Nor is there any contingency to re-contain nuclear waste should it begin leaking from one of these casks.

Current casks designs are qualified for on-site nuclear waste storage for only 20 years and re-certified for four additional cycles. Some of these cask designs have already experienced degradation of protective seals and concrete shielding after less than a decade of use.

Of greatest concern, the casks are situated outside, closely congregated, on open tarmacs raising security concerns for their vulnerability to attack.

Consequently, the anti-nuclear and environmental groups that support DECON insist on the implementation of enhanced security called ‘Hardened On-Site Storage’, or HOSS to minimize these risks.

Rather than storing dozens of vulnerable dry-casks right next to each other in the open air, HOSS better secures the nuclear waste in above-ground individualized casks. These casks are fortified within modules of concentric capped silos of concrete and steel surrounded by earthen mounds.

The HOSS canisters would be dispersed over a wider area than traditional cask storage and would be better positioned to withstand a range and combination of weapons, explosives, and attacks, including anti-tank missiles, aircraft impacts, and car bombs.

Currently, reactor owners are not permitted to spend decommissioning funds on nuclear waste management as part of the DECON process. Nor do utilities want to go to the added expense of HOSS, which is not currently being considered by federal agencies, despite hundreds of petitioning groups and thousands of signatories to make HOSS a nuclear security priority at operating reactors as well as decommissioned sites.

A small number of reactors across the world have already used DECON (but without HOSS.) According to the Paris-based Organization of Economic Cooperation and Development, of the nearly 150 nuclear power reactors that have ceased operation worldwide to date, only 16 units have completed the ‘DECON’ decommissioning process with 10 of those units in the United States taking on average 10 years to complete.

What ‘SAFSTOR’ really means: ‘mothball’ and walk away

The second option, euphemistically-named SAFSTOR, or ‘safe store’, allows owners to take up to 60 years from the day the reactor closes to complete decommissioning. This would effectively enable owners to delay the start of decommissioning for 50 years, leaving the reactor and fuel pools mothballed until then and the local communities at risk.

Unsurprisingly, this is the option that is increasingly favored by reactor owners, who are petitioning the NRC for across-the-board cost cutting under SAFSTOR, regardless of the specific conditions of the individual reactor sites.

Entergy Vice President, Michael Twomey, even told Vermont state legislators in reference to the decommissioning of its Vermont Yankee nuclear reactor, that if the process is not complete in 60 years the company is fully within its rights to simply walk away, and if challenged, would litigate. Vermont Yankee closed on December 29, 2014.

The third option is ENTOMB. Without any regulatory guidance or legal framework, it allows utilities to essentially avoid decommissioning altogether. It is the option when no other options exist, as is the case at Chernobyl.

The exploded Chernobyl containment was eventually shrouded in a giant concrete sarcophagus at great expense and resulting in radiological exposure to hundreds of thousands of laborers. That structure is now being encased with a new, high-tech “Arch”, again at vast expense. However, for regular decommissioning activities, ENTOMB should be viewed as a last resort and not as a strategy for escaping liability.

Waste management is nuclear power’s most painful Achilles’ heel

The waste management aspect of the decommissioning process remains the industry’s most painful Achilles’ heel. Despite successfully suing the Department of Energy for failure to remove the waste, as promised, to a final repository site, utilities are seeking to avoid using those funds for waste management.

Instead, utilities are seeking to siphon off decommissioning trust funds to build and manage the necessary on-site Independent Spent Fuel Storage Installation (ISFSI) to house irradiated fuel from a closed reactor. An ISFSI is not currently considered part of a legitimate decommissioning process covered by the trust fund.

The delays wrought by such wrangling means that irradiated fuel sits in densely packed storage pools inside the reactor – and in the case of the 30 remaining GE Mark I and II reactors in the US, on the roof. (The GE designs are the same as those that melted down and exploded at Fukushima.)

The fuel pools are over-packed because of inadequate existing on-site storage facilities. But delays in offloading them, even while the reactor is still running, never mind when it closes, represent one of the greatest risks to public health, safety and security. A catastrophic fire, aircraft impact or other disaster that released vast amounts of radioactive fallout from the high-density storage pools could contaminate entire regions potentially indefinitely.

“The four ongoing disasters at Fukushima Daiichi have clearly shown the vulnerability of nuclear power plants that have spent nuclear fuel stored in these overcrowded and unprotected spent fuel pools”, Gundersen wrote in his comments to the NRC.

Fuel pools at closed US nuclear plants are a Fukushima waiting to happen

This is the principle reason to oppose SAFSTOR, safety experts say. Not only will the fuel remain in the pools, and in poorly protected waste casks, but protections and safety measures will be reduced. This is already exemplified in Vermont where the NRC has allowed Entergy to dismantle its emergency plan around Vermont Yankee and reduce inspections on the ventilation system near the spent fuel pool.

As Gundersen points out, the Vermont Yankee fuel pool still “contains more highly radioactive waste than was held in any of the fuel pools at Fukushima Daiichi.”

With a Fukushima-scale disaster is a real possibility even at closed reactors, critics are urging the NRC not to rubber stamp exemption requests. In the event of a nuclear catastrophe, evacuations downwind and downstream cannot be assumed to go well if emergency preparedness was discontinued months, years, or even decades earlier.

Even plans for site cleanup and decontamination are inadequate and have been watered down by the NRC itself. Site release criteria currently mandate clearing away surface soil down to three feet. But strontium-90 has been found far deeper on the Vermont Yankee site already. The NRC limit would open the way for strontium and potentially other isotopes resting deeper than three feet to migrate down into groundwater and potentially later to drinking water.

Instead, there should be more thorough post-decommissioning environmental analyses of where and how much residual radioactivity has been left behind in soil and water before power companies are allowed to walk away from accountability and liability.

To do decommissioning right, Gundersen argues that the state ratepayers should control decommissioning funds not the utility, because it is their money.

And, he says, decommissioning should be undertaken in such a way that operators “assure that those plants are promptly and safely decommissioned without unwarranted radiological contamination of the environment and extended cleanup and mitigation costs passed on to ratepayers or taxpayers.” 

 


 

Linda Pentz Gunter is the international specialist at Beyond Nuclear, a Takoma Park, MD environmental advocacy group. http://www.theecologist.org/News/news_analysis/2987679/us_nuclear_industrys_plan_thanks_to_nrc_let_taxpayers_carry_the_can_for_closed_power_plants.html

About these ads

Occasionally, some of your visitors may see an advertisement here