A Discussion of Official Reports Describing the Fukushma Diiachi Nuclear Disaster
The references used for this discussion are:
“The Official report of the Fukushima Nuclear Accident Independent Investigation Commission Executive Summary”, The National Diet of Japan, 2012.
“FUKUSHIMA DAIICHI: ANS Committee Report”, A Report by The American Nuclear Society Special Committee on Fukushima, March 2012.
“The Fukushima Daiichi Accident, Technical Volume 1/5 Description and Context of the Accident, IAEA, Vienna, 2015.
“FACT AND CAUSE OF FUKUSHIMA NUCLEAR POWER PLANTS ACCIDENT”, Hideki NARIAI, Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan.
Other sources, such as press reports, industry and authority regulations and technical bulletins will also be used.
The very great complexity of the disaster and of the human and systems responses to the challenges which confronted, and confront, the Fukushima Diiachi nuclear plant and the people operating and tending to the plant is obvious. The aim of this discussion is to attempt to produce, in review, a coherent picture of the events as reported by the authorities given above.
While the nuclear industry and permanent nuclear authorities – the IAEA – tend to agree closely in their reports of the events, the Fukushima Nuclear Accident Independent Investigation Commission, appointed by the Japanese national Parliament (Diet) reports various aspects of the disaster with pointedly local questioning of events based upon witness accounts and the Committee’s own findings. And these perceptions, based on local knowledge of both the plant and witness statements actually challenge, in aspects, the findings of the other authorities.
As a preamble to the discussion of the disaster, a central consideration to all nuclear power plants in use today has to be included. The long term, intermediate term and short term safety of nuclear power plants depends upon the availability of electrical grid connection and power to the reactors and the entire plant. This is not an opinion, it is a technical fact which nuclear authorities have repeatedly reported upon.
The surprising fact is, that although nuclear reactors can supply electrical power to the world’s largest cities and nations, when the grid goes down, there is no ability for any nuclear reactor to power itself and its systems on any long term basis. There is nothing integral to the reactors which allows the energy resident in the reactors’ cores and pressure vessels to be controlled and managed so as to manage the cooling of the reactors.
While the nuclear industry and nuclear authorities have touted the virtues of nuclear power plant emergency cooling systems for over 50 years. However:
“The emergency cooling systems started. However, they did not work for so long time, and the fuels became to heat up and melt down, resulting the severe accident. “ Source: English translation of “FACT AND CAUSE OF FUKUSHIMA NUCLEAR POWER PLANTS ACCIDENT , Hideki NARIAI, Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan.
As we shall see later, the workers at the Fukushima Diiachi site during the early stages kept the emergency cooling systems going for many hours longer than the systems were designed to last. And these systems are designed to work for 8 hours only. (See the ANS report)..……….
It is beyond me why the nuclear industry, for more then 50 years, has been so wilfully dumb, ignorant and arrogant in the design of its emergency systems. And everything else. It seems to me the main aim of the industry is to sell reactors by any means. Whereas the industry should have the main aim of assuring safety in the context of the modern world and the modern world energy market. The problem is, though solar panels mounted on the Fukushima Shima Diiachi reactor building roofs could have save the day by keeping cooling pumps going, the obvious thought is this: why not just replace the Fukushima Diiachi with a solar and wind farm?
No danger of meltdown at all. As soon the 2009 scientific assessment came in demonstrating that an earthquake and tsunami was due “within the next 30 years”. that is precisely what should have been down. Perhaps Barry Brook and Pam Sykes, two academic non nuclear experts in Australia, were right. No human skill could have saved Fukushima Diiachi. So why leave it there? Pity the authorities in the nuclear industry hid and suppressed the scientific warnings of 2009, including TEPCOs own confirmation of the growing threat. This is standard procedure for the nuclear industry. It is not a particularly Japanese culture. It is nuclear norm.
The IAEA requirements for electricity grids which supply Nuclear Power Plants.
The following text is a straight quote from : ” “ELECTRIC GRID RELIABILITY AND INTERFACE WITH NUCLEAR POWER PLANTS” IAEA NUCLEAR ENERGY SERIES No. NG-T-3.8, IAEA, ….
Quote: ““The safe and economic operation of a nuclear power plant (NPP) requires the plant to be connected to an electrical grid system that has adequate capacity for exporting the power from the NPP, and for providing a reliable electrical supply to the NPP for safe startup, operation and normal or emergency shutdown of the plant.
“Connection of any large new power plant to the electrical grid system in a country may require significant modification and strengthening of the grid system, but for NPPs there may be added requirements to the structure of the grid system and the way it is controlled and maintained to ensure adequate reliability.
“The organization responsible for the NPP and the organization responsible for the grid system will need to establish and agree the necessary characteristics of the grid and of the NPP, well before the NPP is built, so that they are compatible with each other. They will also need to agree the necessary modifications to the grid system, and how they are to be financed.
“For a Member State that does not yet use nuclear power, the introduction and development of nuclear power is a major undertaking. It requires the country to build physical infrastructure and develop human resources so it can
construct and operate a nuclear power plant (NPP) in a safe, secure and technically sound manner. ” end quote. Source: “ELECTRIC GRID RELIABILITY AND INTERFACE WITH NUCLEAR POWER PLANTS” IAEA NUCLEAR ENERGY SERIES No. NG-T-3.8, IAEA,
Hmm. very interesting. NPPs require a specifically designed and modified baseload capable grid network before they can be expected to safely start up, operation and shut down. Further the grid is needed, according to the world nuclear authority, for SAFE EMERGENCY SHUTDOWN.
The Earthquake and the Grid in Japan on the day of the disaster
One would have thought the following information would have been clearly discussed by the nuclear authorities from the day of the disaster. It’s nearly 10 years and still no word from them:
““Vibrations from the magnitude 9.0 earthquake triggered an immediate shut down of 15 of Japan’s nuclear power stations. Seismic sensors picked up the earthquake and control rods were automatically inserted into the reactors, halting the fission reaction that is used to produce electricity. This sudden loss of power across Japan’s national power grid caused widespread power failures, cutting vital electricity supplies to Fukushima Daiichi. There were three reactors, one, two and three, operating at the time when the earthquake hit while reactors four, five and six had already been shutdown as part of routine maintenance work.” “Japan earthquake: how the nuclear crisis unfolded”. Richard Gray, Science Correspondent, The Telegraph, 20 March 2011. end quote.
The first thing the earthquake did was to cause the shutdown of nuclear power feed into the grid. 15 Nuclear Power Plants threw in the towel because they cannot safely operate during an earthquake. Apparently. Nuclear power guarantees black out in an earthquake.