Archive for the ‘radiation’ Category

The radioactive puppies of Chernobyl

October 30, 2017

The Puppies of Chernobyl

 

HUNDREDS OF RADIOACTIVE PUPPIES JUST GOT SPAYED, NEUTERED AT CHERNOBYL DISASTER SITE http://www.newsweek.com/hundreds-puppies-got-spayed-and-neutered-chernobyl-year-669093, BY KATE SHERIDAN An American nonprofit organization, Clean Futures Fund, has started a spay and neuter clinic for the four-legged descendants of survivors of one of history’s worst nuclear disasters.

After the Chernobyl nuclear reactor melted down on April 26, 1986, some dogs and cats left behind survived and began to breed. More than 400 animals were spayed and neutered in the first year of the clinic’s operation at the former reactor, which ended earlier this month.

The laws governing the exclusion zone around Chernobyl strongly advise people to avoid feeding or touching the dogs, due to the risk of contamination. Not only is the dogs’ fur potentially loaded with radioactive particles, but their food and water is contaminated. The radioactive molecules they ingest may also linger in their bodies.

“We could find areas in their bones where radioisotopes had accumulated. We could survey the bones and we could see the radioactivity in them,” a Clean Futures Fund co-founder, Lucas Hixson, told Newsweek. The program funds medical treatment for locals in addition to running the spay and neuter program at the power plant and in the neighboring city.

“These dogs run through [contaminated areas] and it gets stuck on their coat and on the end of their noses and their feet.”

There are nearly 1,000 dogs in the area around the power plant. Only a few dozen cats live in the highly contaminated areas that the dogs frequent.

Hixson has been traveling to Chernobyl for about five years, initially as a radiation specialist. “I go over there expecting to do my work, and I step off the train at the power plant and there’s a dog in my face. Honestly, it was one of the last things I expected to see at Chernobyl,” he said.

To keep the veterinary hospital as free from radioactive contamination as possible, dogs that come to the facility are examined and washed down until their levels of radioactivity are deemed safe.

Despite the potential risk, Hixson said he’s continued to interact with the dogs. “There is a fair amount of handling that happens. This is a natural reaction between humans and dogs,” he said. “You can’t help yourself.”

“They’re not hazardous to your immediate health and wellbeing. But anytime you go pet the dogs, go wash your hands afterwards before you eat.”

Clean Futures Fund got approval from the Ukranian government for its operations. Other partners include SPCA International, Dogs Trust and two U.S. universities, including Worchester Polytechnic Institute and the University of South Carolina.

Hixson also noted the local workers have welcomed the team. “I remember there was a lot of skepticism when we showed up,” he said. “But after about two or three days of us catching dogs, processing them, releasing them, the attitude immediately changed,” he said. “I can’t thank them enough for everything they did.”

Even if every dog and cat in Chernobyl is sterilized and vaccinated, the wider stray dog issue in Ukraine means that more dogs could move into the contaminated area and Clean Futures Fund’s efforts could be somewhat for naught. Ultimately, Hixson would like to work with the Ukranian government on a wider rescue program to get the dogs out of the area and into homes.

He will be returning in November to measure the impact of the program, which is expected to run for five years. The next spay and neuter clinic will happen next summer.

Advertisements

The cancer effect from past nuclear explosions still continues

August 21, 2017

Nuclear explosions from the past are still causing cancer and health problems today https://www.businessinsider.com.au/nuclear-explosion-fallout-cancer-health-effects-2017-8?r=US&IR=T, KEVIN LORIA AUG 18, 2017 

Potassium iodide – a limited remedy for exposure to ionising radiation

August 21, 2017

Verify: Will potassium iodide protect you from nuclear fallout?http://www.abc10.com/news/local/verify/verify-will-potassium-iodide-protect-you-from-nuclear-fallout/464777998 Barbara Harvey, KXTV 6:48 AM. PDT August 16, 2017 In 1999, the World Health Organization released guidelines on the use of potassium iodide, citing the exposure of children to radiation after the Chernobyl disaster.

World Health Organisation’s bizarre response to Chernobyl radiation

May 18, 2017

Hidden Radiation Secrets of the World Health Organization, CounterPunch  MAY 2, 2017

“………..WHO held a Chernobyl Forum in 2004 designed to “end the debate about the impact of Chernobyl radiation” whilst WHO maintains that 50 people died.

Here’s the final conclusion of that Chernobyl Forum ‘04: The mental health of those who live in the area is the most serious aftereffect, leading to strong negative attitudes and exaggerated sense of dangers to health and of exposure to radiation. Mental health was thus identified as the biggest negative aftereffect.

Because that conclusion is so brazenly bizarre, the Chernobyl Forum ‘04 must’ve been part of an alternative universe, way out there beyond the wild blue yonder, maybe the Twilight Zone or maybe like entering a scene in Jan Švankmajer’s Alice, a dark fantasy film loose adaptation of Lewis Carroll’s Alice in Wonderland.

Here’s reality: Chernobyl Liquidators fought the Chernobyl disaster. Eight hundred thousand (800,000) Liquidators from the former USSR, largely recruits from the army, with average age of 33, fought the Chernobyl disaster.

According to an interview (2016) with a Liquidator, “We were tasked with the deactivation of the third and fourth reactors, but we also helped build the containment sarcophagus. We worked in three shifts, but only for five to seven minutes at a time because of the danger. After finishing, we’d throw our clothes in the garbage” (Source: Return to Chernobyl With Ukraine’s Liquidators, Aljazeera, April 25, 2016).

“Estimates of the number of liquidators who died or became ill as a result of their work vary substantially, but the men of the 633rd say that out of the 259 from their group, 71 have died. Melnik says that 68 have been designated as invalids by a state committee, which investigates their health and determines whether or not their diseases are attributable to Chernobyl… Dr Dimitry Bazyka, the current director-general of the National Research Centre for Radiation Medicine in Kiev, says that approximately 20,000 liquidators die each year,” Ibid.

As for total deaths, the Chief Medical Officer of the Russian Federation reported that 10% of its Chernobyl Liquidators were dead by 2001. The disaster occurred in 1986 with 80,000 dead within 16 years. Authorities out of Ukraine and Belarus confirmed Russian death numbers. Yet, WHO claims 50 died.

Eighty-thousand (80,000) Liquidators, as of 16 years ago, dead from Chernobyl, and that body count, according to Ms Katz, leaves out the people most contaminated by Chernobyl, meaning evacuees and also 57% of the fallout for Chernobyl came down outside of the USSR, Belarus, and Ukraine, and in 13 European countries 50% of the countryside was dangerously contaminated.

As for studies of the radiation impact of Chernobyl: “Thousands of independent studies in Ukraine, Belarus, and the Russian Federation and in many other countries, that were contaminated to varying degrees by radionuclides, have established that there has been significant increase in all types of cancer, in diseases of the respiratory, gastrointestinal, urogenital, endocrine immune, lymph node nervous systems, prenatal, perinatal, infant child mortality, spontaneous abortions, deformities and genetic anomalies….” (Katz)

Hence, WHO’s handling and analysis and work on Chernobyl leaves the curious-minded speechless, open-mouthed, agape, and confounded……..http://www.counterpunch.org/2017/05/02/hidden-radiation-secrets-of-the-world-health-organization/

Chernobyl and its radioactive berry harvests

May 18, 2017

The harvests of Chernobyl, Aeon, Thirty years after the nuclear disaster, local berry-pickers earn a good living. What’s the hidden cost of their wares?, Kate Brown, is associate professor of history at the University of Maryland, Baltimore County, and the author of Plutopia (2013). Olha Martynyuk is a historian at the National Technical University of Ukraine.

You can’t miss the berry-pickers in the remote forests of northern Ukraine, a region known as Polesia. They ride along on bicycles or pile out of cargo vans. They are young, mostly women and children, lean and suntanned, with hands stained a deep purple. And they are changing the landscape around them. Rural communities across eastern Europe are struggling economically, but the Polesian towns are booming with new construction. Two hundred miles west of the Chernobyl Nuclear Power Plant, thousands of mushroom- and berry-pickers are revving up the local economy. As they forage, they are even changing the European diet, in ways both culinary and radiological.
The rise of the Polesian pickers adds a strange twist to the story that began on 26 April 1986, when an explosion at the Chernobyl plant blew out at least 50 million curies of radioactive isotopes. Soviet leaders traced out a 30 kilometre radius around the stricken reactor and emptied it of its residents. Roughly 28,000 square kilometres outside this exclusion zone were also contaminated. In total, 130,000 people were resettled, but hundreds of thousands remained on irradiated territory, including the Polesian towns of Ukraine’s Rivne Province. In 1990, Soviet officials resolved to resettle several hundred thousand more residents but ran out of money to carry out new mass evacuations.

Last summer, we went to Rivnе to talk to people who in the late 1980s wrote petitions begging for resettlement. In the letters, which we had found in state archives in Kiev and Moscow, writers expressed worries about their health and that of their children, while describing a sense of abandonment. Help never arrived; the Chernobyl accident came just as the Soviet state began to topple economically and politically……..

Anyone in Polesia can pick anywhere, as long as they are willing to brave the radioactive isotopes. After Chernobyl, Soviet officials strongly discouraged picking berries in contaminated forest areas, which promised to remain radioactive for decades. As the years passed, fewer and fewer people heeded the warnings. In the past five years, picking has grown into a booming business as new global market connections have enabled the mass sale of berries abroad. A person willing to do the hard work of stooping 10 hours a day and heaving 40-pound boxes of fruit to the road can earn good money. The women and child pickers are revitalising the Polesian economy on a modest, human-powered scale. They are quietly and unceremoniously doing what development agencies and government programmes failed to do: restoring commercial activity to the contaminated territory around the Chernobyl Zone.

We followed the pickers into the woods. …….

Reliance on the forest for a living is an ancestral tradition in Polesia. Because of the mineral-poor soils, traditional farming never thrived here. Instead, Polesians subsisted on game, fish, berries, herbs and mushrooms while making their tools and homes from wood and clay. What is new in the past few years is the industrial-sized scale of berry harvesting. A typical roadside berry-buyer purchases about two tons of berries a day in season, and there are hundreds of buyers. In 2015, Ukraine exported 1,300 tons of fresh berries and 17,251 tons of frozen berries to the European market – more than 30 times as much as in 2014. Ukraine is now one of biggest exporters of blueberries to the EU.

That success is all the more remarkable because Polesian berries are not just any berries. They grow in radioactive soils, which means that they carry some of Chernobyl’s legacy in them. We showed up at a berry wholesaler in the boom town of Rokytne and noticed a radiation monitor who was stationed to meet buyers at the loading dock. The situation there was tense. As the monitor waved a wand over each box of berries, measuring their gamma ray emission, she set aside about half of the boxes. The buyers argued with her, trying to lower the count on their berries: ‘It’s not the berries that are radiating. It’s my trailer. Measure it over there.’

We asked the monitor, a young townswoman, how many berries come up radioactive. ‘All the berries from Polesia are radioactive,’ she replied, ‘but some are really radioactive. We’ve had berries measure over 3,000!’ She could not describe what units she was referring to, microsieverts or microrems; she only knew which numbers were bad. ‘The needle has to be between 10 and 15,’ she said, vaguely pointing to her wand, ‘and then I place it in this machine.’ She gestured toward a small mass spectrometer. ‘If the readout is more than 450, then the berries are over the permissible level.’

Contrary to our assumption, the berries rejected as too radioactive were not discarded, but were merely placed aside. Then they, too, were weighed and sold, just at lower prices. The wholesalers we spoke to said that the radioactive berries were used for natural dyes. The pickers claimed the hot berries were mixed with cooler berries until the assortment came in under the permissible level. The berries could then legally be sold to Poland to enter the European Union (EU) market, even if some individual berries measured five times higher than the permissible level. Such mixing is legal as long as the overall mix of berries falls within the generous limit of 600 becquerel per kilogram set by the EU after the Chernobyl disaster.

No one, certainly no official, ever envisioned revitalising the economy by exploiting berries and mushrooms. Months after the 1986 accident, Soviet scientists determined that forest products were the most radioactive of all edible crops, and banned their consumption. However, villagers in Polesia never stopped harvesting berries and mushrooms (as well as game and fish) from the forests outside the fenced-off Chernobyl Zone. Women sold their produce surreptitiously at regional markets, deftly avoiding the police who learned to identify Polesians by their homemade baskets……..

AQlthough the Polesian berries meet EU standards, it remains unclear how healthy life is for those living in the Rivne Province. Official publications of the World Health Organization and the International Atomic Energy Agency assert that radiation levels in Polesia are too low to cause health damage other than a slight rise in the chance of cancer. However, that judgment is based on reference studies of Hiroshima and Nagasaki victims, not on local research in the Chernobyl zones. Wladimir Wertelecki, a geneticist at the University of California, San Diego, has spent the past 16 years tracking every recorded birth in the Rivne Province. ‘Hiroshima was just one big X-ray. It doesn’t compare to the doses of people in Polesia who ingest radioactive isotopes every day,’ he says. He thinks that the slow-drip exposure of organs to radioactive isotopes over decades makes for a far more damaging exposure than the single, external Hiroshima dose.

Researchers in Wertelecki’s group and those working on small, usually minimally financed medical studies have found that low doses of ingested radiation tend to concentrate in vital organs that keenly impact on important body functions. Yury Bandazhevsky, a pioneer in studying the health impacts of Chernobyl, has recorded a correlation between the incorporation of radioactive cesium in children’s bodies and heart disease in Belarus and Ukraine. Wertelecki and the Ukrainian medical researcher Lyubov Yevtushok discovered that in the six Polesian regions of the Rivne Province, certain birth defects, such as microcephaly, conjoined twins and neural-tube disorders occur three times more frequently than is the European norm. ‘We did not prove with this study that radiation causes birth defects. We just have a concurrence, not proof, of cause and effect,’ Wertelecki says. Nevertheless, he considers the concurrence statistically strong enough to warrant large-scale epidemiological studies that could prove or disprove whether the birth defects were caused by radiation.

Despite the fact that the nuclear disaster presented scientists with a unique living laboratory, few funding agencies have been willing to finance Chernobyl studies on non-cancerous health effects; based on Japanese bomb-survivor research, industry scientists have insisted that there would be no measurable non-malignant impacts. In Chernobyl-contaminated Polesia, however, few people doubt that ingesting radioactive toxins over decades has a biological cost.

Galina, the woman who declared that there was ‘no Chernobyl’, changed her view later when talking about her own health. Trim and fit at the age of 50, she had a stroke followed by two surgeries for ‘women’s cancer’. About her cancers, she said: ‘All of a sudden, they started growing day by day. I asked the doctors if they’d hold up the operation until autumn [after the harvest], but they said I’d be dead by then. Probably, these problems were caused by radiation. It does have an effect, apparently.’ Even less is known about non-cancer health impacts from Chernobyl. Many locals complain of aching and swollen joints, headaches, chronic fatigue and legs that mysteriously stop moving. There have been almost no studies investigating these vague complaints…….

here has been little public discussion and almost no medical research on the long-term, low-dose ingestion of radioactive isotopes. Presumably exporting the berries helps the people of Polesia, but for now there is no hard proof……

The mass marketing of radioactive Polesian forest products is an unexpected outcome of policies aimed at finalising the disaster. It is a development that disputes the focus on Chernobyl as a ‘place’. Rather, Chernobyl is an event, an ongoing occurrence that transpires as long as the radioactive energy released in the accident continues to decay…….https://aeon.co/essays/ukraine-s-berry-pickers-are-reaping-a-radioactive-bount

Ionising radiation: the long term impact on the Chernobyl region

May 18, 2017

The numbers of cases rose into the thousands, too high to dismiss, and in 1996 the WHO and the IAEA finally admitted that skyrocketing rates of childhood thyroid cancer were most likely due to Chernobyl exposures.

Today we know little about the non-cancerous effects that Soviet scientists working in contaminated zones reported in the late 1980s, and which they attributed to internal and external exposures to ionizing radiation. Are these effects as real as the childhood thyroid cancers proved to be? The Soviet post-Chernobyl medical records suggest that it is time to ask a new set of questions about long-term, low-dose exposures.

Chernobyl’s hidden legacy http://live.iop-pp01.agh.sleek.net/physicsworld/reader/#!edition/editions_Nuclear_2017/article/page-19330 Kate
Brown
 is a historian at the University of Maryland, Baltimore County, US, e-mail kbrown@umbc.edu
 Historian Kate Brown argues that scientists should re-examine Soviet-era evidence of health effects from low doses of radiation

In June 1980 a doctor with the Oak Ridge Associated Universities in the US wrote a letter to a colleague at the Knolls Atomic Power Laboratory in upstate New York. The pair were corresponding about a forthcoming study of employee health at the Knolls reactor, and the doctor, C C Lushbaugh, wrote that he expected “little ‘useful’ knowledge” from this study “because radiation doses have been so low”. Even so, he agreed that the study had to be done because “both the workers and their management need to be assured that a career involving exposures to low levels of nuclear radiation is not hazardous to one’s health”. The results of such a study, he surmised, would help to counter anti-nuclear propaganda and resolve workers’ claims. However, they could also be a liability. If a competing union or regulatory agency got hold of the employees’ health data, Lushbaugh fretted, it could be weaponized. “I believe,” he continued, “that a study designed to show the transgressions of management will usually succeed.”

Lushbaugh’s dilemma is characteristic of research on the human health effects of exposure to low doses of radiation. He assumed he knew the results – good or bad – before the study began, because those results depended on how the study was designed. The field was so politicized, in other words, that scientists were using health studies as polemical tools and, consequently, asking few open-ended scientific questions.

A few years after Lushbaugh posted this letter, reactor number four at the Chernobyl nuclear power plant blew up, killing 31 workers and firefighters and spreading radioactive material across a broad area of what was then the Soviet Union (now Ukraine and Belarus) and beyond. The accident also exploded the field of radiation medicine and, for a while, promised to rejuvenate it. In August 1986, months after the accident, the chief of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Giovanni Silini, advocated an enduring epidemiological investigation similar to research on atomic-bomb survivors in Japan [1]. Many other scientists concurred, hoping that Chernobyl could clear up ongoing controversies and uncertainties surrounding low-dose exposures.

It never happened. No long-term epidemiological study took place. That’s not to say there isn’t any information. A few summers ago I went to the Ukrainian national archives in the dusty, bustling outskirts of Kiev and asked the archivists for files on Chernobyl from Soviet Ukraine’s Ministry of Health. They laughed, telling me Chernobyl was a banned topic in the Soviet Union. “You won’t find anything,” they said.

They were wrong. I found dozens of collections labelled “The medical effects of the Chernobyl disaster”. I started reading and have not yet been able to stop.

The aftermath

In the years between 1986 and 1991, doctors and sanitation officials wrote to the Ministry of Health in Kiev with alarming accounts of widespread, chronic illness among the hundreds of thousands of children and adults living in contaminated territories. They recorded increases in tonsillitis, upper respiratory disease and disorders of the digestive tract and immune system. Between 1985 and 1988, cases of anaemia doubled. Physicians from almost every region in the zone of contamination reported a leap in the number of reproductive problems, including miscarriages, stillbirths and birth malformations. Nervous-system disorders surged. So did diseases of the circulatory system. In 1988, in the heavily contaminated Polesie region of northern Ukraine, 80% of children examined had upper respiratory diseases and 28% had endocrine problems. In Ivankiv, where many cleanup workers lived, 92% of all children examined had a chronic illness.

I also went to Minsk to check the archives in Belarus. There, I read reports that sounded eerily similar to the Ukrainian documents. These reports were classified “for office use only”, meaning that at the time, scientists were not free to exchange this information across districts or republics of the Soviet Union. Even so, independently, they were reporting similar, bad news. The problem grew so dire in Belarus that in 1990 officials declared the entire republic, which received more than 60% of Chernobyl fallout, a “zone of national ecological disaster”.

The Ukrainian and Belarusian reports, hundreds of them, read like a dirge from a post-catastrophic world. Doctors wrote from clinics in Kharkiv, far outside the contaminated zone, and described similar health problems among evacuees who had settled there. Physicians sent telegrams from Donetsk, where they were treating a complex of illnesses among young miners who had burrowed under the smouldering reactor in the days after the accident. Medical workers sent in to examine people in contaminated regions also fell ill.

In response, the Union of Soviet Radiologists penned a petition to alert Soviet leaders of the ongoing public health disaster. The president of the Belarusian Academy of Science sent a detailed summary of scientists’ findings to Minsk and Moscow. Even a KGB general, Mikhailo Zakharash, sounded the alarm. Zakharash, who was also a medical doctor, conducted a study of 2000 cleanup workers and their family members in a specially equipped KGB clinic in Kiev. In 1990, summing up four years of medical investigation, he wrote, “We have shown that long term, internal exposures of low doses of radiation to a practically healthy individual leads to a decline of his immune system and to a whole series of pathological illnesses.”

Chronic radiation

These findings track with what Soviet doctors had long described as chronic radiation syndrome, a complex of symptoms derived from chronic exposure to low doses of radiation. Researchers working on Chernobyl discerned a pattern of disease that tracked with pathways of radioactive isotopes entering the body, paths that began in either the mouth and headed towards the gastrointestinal tract or started in the lungs and followed blood into circulatory systems. Radioactive iodine sped to thyroids, they hypothesized, causing endocrinal and hormonal damage.

Critics, mostly in Moscow and the ministries of health, acknowledged the growth in health problems, but denied a connection to Chernobyl. A E Romanenko, the Ukrainian Minister of Health, is credited with inventing the word “radiophobia” to describe a public fear of radiation that induced stress-related illness. He and his colleagues also pointed to a screening effect from mass medical monitoring. Local doctors, they said, were projecting the diagnoses of chronic radiation syndrome onto their patients, blaming it for any illness found after Chernobyl.

There are some problems with these arguments. From 1986 to 1989, Chernobyl was a censored topic in the Soviet Union. Doctors could not exchange information about health problems, nor did they have access to maps of radioactive contamination. They only learned to be “radiophobic” by judging the bodies they examined. In the same years, doctors were also fleeing contaminated areas en masse, leaving hospitals and clinics in those regions staffed at 60%. As physicians left, so too did the chance for diagnosis, meaning that under-reporting of illnesses was more likely than a screening effect. Moreover, doctors from the northern regions of the Rivne province, which were at first judged clean and only in late 1989 designated contaminated, reported the same growth of illness as areas originally deemed “control zones,” regions with counts of more than 5 curies per square kilometre. The president of the Belarusian Academy of Science, V P Platonov, pointed to a vacuum of knowledge: “Until this time, no population has ever lived with continual internal and external exposures of this size.” Risk assessments assuring safe levels in the contaminated zones were extrapolated from the Japanese Atomic Bomb Survivor Lifespan Study, but these began only in 1950, five years after exposure. “Much is uncertain,” Platonov continued, “about fundamental aspects of the effects of low doses of radiation on human organs,” [2].

What happened to the 1980s Chernobyl health studies, which might have led to a renaissance in the field of radioecology? Essentially, they were overlooked. To figure out why, I went to the headquarters of the World Health Organization (WHO) in Geneva, to the UN’s archives in New York and the archives of UNSCEAR in Vienna. There, I found evidence of a conflict between branches of the WHO and the International Atomic Energy Agency (IAEA) over which organization would control the studies of Chernobyl health effects.

By 1989 angry crowds were questioning the Soviet Union’s handling of Chernobyl, and Soviet leaders asked foreign experts for help in assessing the disaster’s health impacts. The IAEA agreed, and Fred Mettler, a radiologist and American delegate to UNSCEAR, was appointed to head the medical section of an IAEA team. In 1990, as he and his team examined 1726 people in six contaminated zones and six control zones, Soviet doctors gave him 20 slides from children diagnosed with thyroid cancer. Thyroid cancer is very rare in children: before the Chernobyl accident, doctors saw eight or nine cases per year in all of Ukraine. Twenty cases in just three provinces was hard to believe. Dubious, Mettler brought the slides to the US to have them verified. They indeed indicated thyroid cancer.

Cancer cluster

Mettler mentioned this major medical finding in the 1991 International Chernobyl Project (ICP) technical report, but strangely, he also stated that there was “no clear pathologically documented evidence of an increase in thyroid cancer” [3]. The report concluded that there were no detectable Chernobyl health effects and only a probable chance of childhood thyroid cancers in the future. In a 1992 publication on thyroid nodules in the Chernobyl territories, Mettler failed to mention the 20 verified cases at all [4].

How could such a lapse occur? I found a confidential 1990 UN memo that seems relevant, particularly in light of the study-design problem set out in Lushbaugh’s letter a decade earlier. The memo suggests that the IAEA was conducting the ICP study to “allay the fears of the public” in service of “its own institutional interest for the promotion of peaceful uses of nuclear energy” [5]. The experiences of Keith Baverstock, then head of the radiation protection programme in the WHO’s European office, likewise reveal an institutional aversion to bad news. In July 1992 Baverstock planned to go to Minsk to examine childhood thyroid cases in Belarus, where doctors reported an astounding 102 new cases. At the last minute, officials from the WHO and the Commission of European Communities inexplicably pulled out of the mission. In an interview with me, Baverstock, an expert on the effects of ionizing radiation, said that a WHO official told him he could get fired if he went to Minsk.

He went anyway. With Belarusian scientists, he published news of the thyroid cancer epidemic in Nature. A top IAEA official complained angrily to the WHO, and the two agencies put pressure on Baverstock to retract his article. He refused, and a barrage of letters followed in Nature disputing the connection between the cancers and Chernobyl exposures [6]. Leading scientists from the US Department of Energy, the National Cancer Institute, Japan’s Radiation Effects Research Foundation and the IAEA argued that cancers were found because of increased surveillance. They called for a suspension of judgment and for further study. Repetitive and dismissive, their letters read like an orchestrated pile-on.

We now know that these global leaders in radiology were wrong. The numbers of cases rose into the thousands, too high to dismiss, and in 1996 the WHO and the IAEA finally admitted that skyrocketing rates of childhood thyroid cancer were most likely due to Chernobyl exposures. Today, the UNSCEAR maintains that the health consequences of the Chernobyl accident are limited to 31 direct fatalities – plus 6000 cases of children’s thyroid cancer [7].

Lingering questions

The question is – so what? Despite the 1991 ICP report’s erroneous claim of no health effects, UN agencies eventually recognized the cancer epidemic. What difference did a few years make? A great deal, it turns out. The ICP report also recommended that resettlements from the most contaminated regions should cease [8]. Consequently, the planned resettlement of 200,000 people living in areas contaminated with high levels of radiation (between 15 and 40 curies per square kilometre) slowed tremendously. The UN General Assembly had also been waiting for the report before raising funds for Chernobyl relief. The $646m budget (equivalent to about $1.1bn today) included medical aid, resettlement funds and a large-scale epidemiological study of Chernobyl health effects. The assertion by important UN agencies that there were no detectable health effects deflated that effort. Before the report, Japan had given $20m to the WHO, but afterwards it gave no more and complained about the funds being wasted. A few other countries gave sums totalling less than $1m, while the US and the European Community begged off entirely, citing the ICP report as a “factor in their reluctance to pledge” [9].

In subsequent years, IAEA and UNSCEAR officials cited the ICP report when discouraging Chernobyl-related health projects. In 1993 UNSCEAR scientific secretary Burton Bennett recommended that UN agencies suspend all programmes aimed at Chernobyl relief because they were unnecessary. He and IAEA administrator Abel Gonzalez, who led the ICP assessment, widely shared their views among UN agencies about “misinformation surrounding the Chernobyl accident” [10]. When the WHO, nonetheless, started a pilot study on Chernobyl health effects, Gonzalez wrote that he could not imagine what the WHO “expects to be able to detect for the level of doses in question”. Irked that WHO officials would examine any effects but psychological ones, he charged, “The World Health Organization seems to ignore, expressly or tacitly, the conclusions and recommendations of the International Chernobyl Project,” [11].The consequences of this moment of deviant science continue 30 years later. Today we know little about the non-cancerous effects that Soviet scientists working in contaminated zones reported in the late 1980s, and which they attributed to internal and external exposures to ionizing radiation. Are these effects as real as the childhood thyroid cancers proved to be? The Soviet post-Chernobyl medical records suggest that it is time to ask a new set of questions about long-term, low-dose exposures.

References

  1. Giovanni Silini 1986 “Concerning proposed draft for long-term Chernobyl studies” Correspondence Files, UNSCEAR Archive
  2. V P Platonov and E F Konoplia 1989 “Informatsiia ob osnovynkh rezul’tatakh nauchnykh rabot, sviazannykh s likvidatsiei posledstvii avarii na ChAES” RGAE 4372/67/9743: 490
  3. International Chernobyl Project, Proceedings of an International Conference (Vienna: IAEA 1991): 47. Mettler also admitted that the slides checked out at the Vienna conference convened to discuss the report. For a discussion of thyroid cancer, see The International Chernobyl Project, Technical Report, Assessment of Radiological Consequences and Evaluation of Protective Measures (Vienna: IAEA 1991): 388
  4. Fred Mettler et al. 1992 “Thyroid nodules in population around Chernobyl” Journal of American Medical Association 268 616
  5. From Enrique ter Horst, Asst Sec Gen, ODG/DIEC to Virendra Daya, Chef de Cabinet, EOSG, 16 April 1990, United Nations Archive, New York S-1046 box 14, file 4, acc. 2001/0001
  6. Baverstock et al. 1992 “Thyroid cancer after Chernobyl” Nature 359 21; Kazakov et al. 1992 “Thyroid cancer after Chernobyl” Nature 359 21; I Shigematsu and J W Thiessen 1992 “Childhood thyroid cancer in Belarus” Nature 359 680; V Beral and G Reeves 1992 “Childhood thyroid cancer in Belarus” Nature 359 680; E Ron, J Lubin, A B Scheider 1992 “Thyroid cancer incidence” Nature 360 113
  7. The Chernobyl accident: UNSCEAR’s assessments of the radiation effects” UNSCEAR website
  8. The International Chernobyl Project: an Overview (Vienna: IAEA 1991): 44
  9. “International co-operation in the elimination of the consequences of the Chernobyl Nuclear Power Plant accident” 24 May 1990, UNA S-1046/14/4; “Third meeting of the Inter-Agency Task Force on Chernobyl” 19–23 September 1991, WHO E16-445-11, 5; “Briefing note on the activities relating to Chernobyl” 3 June 1993, Department of Humanitarian Affairs DHA, UNA s-1082/35/6/, acc 2002/0207; Anstee to Napalkov, 17 Jan 1992, WHO E16-445-11, 7
  10. Gonzalez to Napalkov, 10 August 1993, WHO E16-445-11, 19; B G Bennett 1993 “Background information for UNEP representative to the meeting of the Ministerial Committee for Coordination on Chernobyl” 17 November 1993, New York, Correspondence Files, UNSCEAR Archive, Vienna
  11. Gonzalez to Napalkov, 10 August 1993, WHO E16-445-11, 19

Radiation and milk

March 9, 2017

What’s up with milk and radiation? , Connect Savannah, 14 Sept 2011, 

1. It’s a food. While an external dusting of radionuclides isn’t healthy, for efficient long-term irradiation of vulnerable organs there’s no substitute for actually ingesting the stuff.

2. It’s fast. Not to knock potatoes and chicken, but growing these items can take weeks or months. With milk, the fallout simply drifts over the pasture and lands on the grass, which the cows then eat. The radioactive particles are deposited in the cows’ milk, the farmers milk the cows, and in a day or two the contaminated product shows up in the dairy case.

3. Because it’s processed quickly, milk makes effective use of contaminants that would otherwise rapidly decay. A byproduct of uranium fission is the radioactive isotope iodine-131. Iodine is critical to functioning of the thyroid gland, and any iodine-131 consumed will be concentrated there. However, iodine-131 has a half-life of just eight days. The speed of dairying eliminates this impediment.

4. Milk also does a good job of delivering other radioactive contaminants, such as cesium-134 and cesium-137. Although not important for human health, radioactive cesium mimics potassium, which we do need, and is readily absorbed by the body. Another uranium breakdown product is strontium-90, which is especially hazardous to children, since it can be incorporated into growing bones. In contrast to radioactive iodine, strontium-90 has a half-life of about 29 years, so once it gets embedded in you, you are, as the Irish say, fooked.

5. That brings us to the most fiendish property of radioactive milk-it targets the young. Children (a) drink a lot more milk and (b) are smaller, which when you add it up means they get a much stiffer dose. Some cancers triggered by radioactivity have a long latency period; older people may die of something else first, but kids bear the full brunt.

For all these reasons, testing milk and dumping any contaminated is at the top of the list of disaster-response measures following a nuclear accident, and it’s unusual, though not unknown, for bad milk to find its way into the food supply. For example:

• Iodine contamination during the 1979 Three Mile Island accident was negligible, 20 picocuries per liter. The FDA’s “action level” at the time was 12,000 picocuries per liter; the current limit of 4,600 picocuries is still far in excess of what was observed.

• After the problems with the Fukushima reactors in Japan, one batch of hot milk did test at nine times the current limit, and milk and vegetable consumption was prohibited in high-risk areas. But most bans were rescinded after a couple months.

• In 1957, after a fire at the Windscale plutonium processing plant in the UK, radiation levels of 800,000 picocuries per liter and higher were found in local milk. Though contamination of milk wasn’t well understood at the time, authorities figured 800,000 of anything involving curies can’t be good and banned the stuff.

• Then there’s Chernobyl. Milk sales were banned in nearby cities after the 1986 reactor explosion, but feckless Soviet officials let the sizable rural population fend for itself. Not surprisingly, 6,000 cases of thyroid cancer subsequently developed, proving there’s no catastrophic situation that stupidity can’t make worse.

One last thing. We’ve been talking about cow’s milk, but be aware that iodine-131, strontium-90, and other radioactive contaminants can also be transferred through human milk…..http://www.connectsavannah.com/savannah/whats-up-with-milk-and-radiation/Content?oid=2135647

USA’s EPA ( Nuclear Industry Protection Agency) confirms dramatic increase in radiation will be permitted in drinking water

February 1, 2017

RADICAL DRINKING WATER RADIATION RISE CONFIRMED IN EPA PLAN http://www.peer.org/news/news-releases/radical-drinking-water-radiation-rise-confirmed-in-epa-plan.html EPA Hid Planned Exposure Levels 1,000s of Times Safe Drinking Water Act Limits PEER, Dec 22, 2016 Washington, DC 


— In the last days of the Obama Administration, the U.S. Environmental Protection Agency is about to dramatically increase allowable public exposure to radioactivity to levels thousands of times above the maximum limits of the Safe Drinking Water Act, according to documents the agency surrendered in a federal lawsuit brought by Public Employees for Environmental Responsibility (PEER). These radical rollbacks cover the “intermediate period” following a radiation release and could last for up to several years. This plan is in its final stage of approval.

The documents indicate that the plan’s rationale is rooted in public relations, not public health. Following Japan’s Fukushima meltdown in 2011, EPA’s claims that no radioactivity could reach the U.S. at levels of concern were contradicted by its own rainwater measurements showing contamination from Fukushima throughout the U.S. well above Safe Drinking Water Act limits. In reaction, EPA prepared new limits 1000s of times higher than even the Fukushima rainwater because “EPA experienced major difficulties conveying to the public that the detected levels…were not of immediate concern for public health.”

When EPA published for public comment the proposed “Protective Action Guides,” it hid proposed new concentrations for all but four of the 110 radionuclides covered, and refused to reveal how much they were above Safe Drinking Water Act limits. It took a lawsuit to get EPA to release documents showing that –

  • The proposed PAGs for two radionuclides (Cobalt-60 and Calcium-45) are more than 10,000 times Safe Drinking Water Act limits. Others are hundreds or thousands of times higher;
  • According to EPA’s own internal analysis, some concentrations are high enough to deliver a lifetime permissible dose in a single day. Scores of other radionuclides would be allowed at levels that would produce a lifetime dose in a week or a month;
  • The levels proposed by the Obama EPA are higher than what the Bush EPA tried to adopt–also in its final days. That plan was ultimately withdrawn; and
  • EPA hid the proposed increases from the public so as to “avoid confusion,” intending to release the higher concentrations only after the proposal was adopted. The documents also reveal that EPA’s radiation division even hid the new concentrations from other divisions of EPA that were critical of the proposal, requiring repeated efforts to get them to even be disclosed internally.
  • “To cover its embarrassment after being caught dissembling about Fukushima fallout on American soil, EPA is pursuing a justification for assuming a radioactive fetal position even in cases of ultra-high contamination,” stated PEER Executive Director Jeff Ruch, noting that New York Attorney General Eric Schneiderman has called for the PAGs to be withdrawn on both public health and legal grounds. “The Safe Drinking Water Act is a federal law; it cannot be nullified or neutered by regulatory ‘guidance.’”Despite claims of transparency, EPA solicited public comment on its plan even as it hid the bulk of the plan’s effects. Nonetheless, more than 60,000 people filed comments in opposition.

    “The Dr. Strangelove wing of EPA does not want this information shared with many of its own experts, let alone the public,” added Ruch, noting that PEER had to file a Freedom of Information Act lawsuit to force release of exposure limits. “This is a matter of public health that should be promulgated in broad daylight rather than slimed through in the witching hours of a departing administration.”

NO, nuclear reactors are definitely not clean

February 1, 2017

Fukushima Radiation Looms. No Nuclear Power Plant On Planet Earth! “The Incompatibility of Radiation with Human Life” By Eiichiro Ochiai Global Research, January 05, 2017.…………… Approximately 450 nuclear power reactors are presently on this earth.  In the nuclear power production of electricity, only one third of the heat produced in a reactor is converted into electricity, and the remainder two third of heat is released into the surrounding.  A typical 1giga watt reactor will release 4.7 x 1016 joule of heat into the environment per year.  This much heat will bring 100 million tons of water at zero degree to boiling.  This is with a single nuclear reactor.  The nuclear power reactors are excellent environmental heaters.  Hundreds of such reactors are operating on this earth.  But this fact is ignored in the argument of the nuclear power being environmentally clean.  This is not the only reason for the nuclear reactors being unclean.

In addition, this typical reactor of 1 giga (thousand mega) watt of capacity (electricity) produces in a year radioactive material equivalent to about 1000 Hiroshima atomic bombs.  In 2015, the total amount of electricity produced by nuclear reactors was 2,441 BkWh (billion kilo watt hours: data [7]), which is 8.79 x 1018 joule.  It was produced by about 280 nuclear reactors of 1 giga watt capacity.  So they produced radioactive material approximately equivalent to 280,000 Hiroshima bombs.  In addition, they released 1.3 x 1019 joule of heat into the environment.  These are the values for just one year.  Nuclear power reactors have been operating the last forty years, though not always this many.

Anyway, an enormous amount of radioactive material has been made on the earth.  How much of it has been released into the environment is not easy to estimate.  They have come out into the environment through the tests of the nuclear weapons, use of depleted uranium bombs, the routine release of some radioactive material from the nuclear facilities under normal conditions and others, in addition to the accidents at nuclear facilities.  The effects of the released radioactive material have been amply observed and reported, and yet are not shared with the majority of humankind.  We mention here only a few cases, and refer them to a few major sources.  The nuclear weapon explosion tests in the atmosphere affected the people in the eastern side, Utah, of the test site in Nevada (1951-1960, ref [8]).  Chernobyl nuclear reactor accident in the present Ukraine (1986) was one of the worst nuclear facility accidents, and people are still suffering  [9]. Fukushima nuclear power plant disaster (2011) cause by the huge earthquake along with tsunami is far from settled, and health effects are only now becoming manifest [10]. These incidents represent the notion that the nuclear power is “not clean” at all, rather it is the dirtiest……http://www.globalresearch.ca/fukushima-radiation-looms-no-nuclear-power-plant-on-planet-earth-the-incompatibility-of-radiation-with-human-life/5566712

Confirmed – low dose radiation increases cancer risk- World Health Organisation

February 1, 2017

 http://fukushimawatch.com/2015-11-05-multiple-studies-confirm-exposure-to-low-levels-of-radiation-can-cause-cancer.html The World Health Organization (WHO) has confirmed what Fukushima Watch has been reporting for quite some time now — namely, that exposure to low doses of radiation overtime increases the risk of cancer.

The results of the study, published in the prestigious British Medical Journal (BMI), provide “direct evidence about cancer risks after protracted exposures to low-dose ionizing radiation,” said the International Agency for Research on Cancer (IARC), the cancer agency of the World Health Organization.

The findings demonstrate “a significant association between increasing radiation dose and risk of all solid cancers,” the study’s co-author, Dr. Ausrele Kesminiene, told sources.

“No matter whether people are exposed to protracted low doses or to high and acute doses, the observed association between dose and solid cancer risk is similar per unit of radiation dose,” he added.

Nuclear workers around globe at heightened cancer risk

The study evaluated approximately 300,000 nuclear workers in Britain, France and the United States between 1943 and 2005. The average dose to the colon of workers was 21 mGy, a derived unit of ionizing radiation dose in the International System of Units.

Dose to the colon is often used in radiation studies. It allows the results to be compared to previous radiation studies, like atomic bomb survivors, from which most knowledge about the link between cancer and radiation is founded.

Results of the study showed the risk of death from solid cancer was modest and increased by nearly five percent per 100 mGy. Among all the participants, approximately 1 out of 100 died from cancer which originated from radiation exposure in the workplace. Among participants who were exposed to 5 mGy of radiation dose in the workplace, an estimated 2.4 out of 100 people died from radiation exposure.

The findings of the study add further evidence to the causal connection between solid cancer and exposure to low radiation levels. The average lifespan of the participants in the study was 58 years, an age at which the incidence of many diseases is on the rise.

Since the level of doses received by nuclear workers is comparable to those received by patients repeatedly exposed to CT scans or other radiology procedures, IARC researcher Dr. Isabelle Thierry-Chef said the findings are important not only for the protection of workers in the nuclear industry, but for medical staff and the general population, as well.

“This stresses the importance of striking a balance between the risks and the benefits of such medical imaging procedures,” she added.

Results of study cross verified by meta-analysis   This isn’t the first time exposure to low levels of radiation was shown to have an adverse effect on health. Even the lowest levels of radiation are harmful to life, according to a 2012 meta-analysis published in the Philosophical Society’s journal, Biological Reviews.

The meta-analysis included 46 peer-reviewed studies published in the last 40 years. Both plants and animals were reviewed in the study, with the majority being humans. The researchers found that low levels of background radiation had a significant negative impact on DNA and several levels of health.

What is ironic is that this study was published about a year and a half after the Fukushima disaster. A tsunami bombarded the Fukushima Daiichi power plant, which released a plume of radiation into the environment. The Tokyo Electric Power Company (TEPCO), the company in charge of the site, claims radiation hasn’t had an adverse effect in nearby communities despite overwhelmingly massive evidence to the contrary.

To make matters worse, radiation from the Fukushima disaster is now beginning to bombard the West Coast. Although radiation has been diluted by the sea, it will remain in the environment for decades. And as the results of these studies have shown, continuous exposure to modest amounts of radiation would have a noxious accumulative effect overtime.

The lesson to be learned? Claims that “a little radiation never hurt anyone” should be taken with a grain of salt.

Sources:

IARC.Fr/En

OnlineLibrary.Wiley.com