Archive for the ‘REACTOR TYPES’ Category

Damning refutation of Australian Government plan to join the Framework Agreement for Generation IV Nuclear Energy Systems

May 18, 2017

Today, I am taking the unusual step of publishing an entire submission. That’s because it is so good.  The nuclear lobby pulled a swifty on Australians, by having government and media very quietly do what is sure to be a “rubber stamp” job on Australia joining up to the Framework Agreement for Generation IV Nuclear Energy Systems.

They allowed a very short time for submissions to the Parliamentary Inquiry. The nuke lobby must have been in the know, as they put in 11, whereas there were only 3, (one mine) critical of the plan.

Fortunately the critical ones contain compelling information. So, here, in full, is the:

Submission from Friends of the Earth Australia and the Australian Conservation Foundation .

Contacts:

• Jim Green (Friends of the Earth, Australia) jim.green@foe.org.au, 0417 318 368

• Dave Sweeney (Australian Conservation Foundation) dave.sweeney@acf.org.au, 0408 317 812

Contents

1. Introduction and Response to National Interest Analysis

2. Generation IV Reactor Concepts ‒ Introduction

3. Decades Away

4. Purported Benefits

5. French Government’s IRSN Report

6. US Government Accountability Office Report

7. The Slow Death of Fast Reactors

8. Integral Fast Reactors

9. Thorium 10. Small Modular Reactors 11. Fusion Scientist Debunks Fusion (more…)

Transatomic Power’s false claims about Generation IV nuclear reactors

March 9, 2017

It’s interesting the way that, for dubious nuclear enterprises, they like to put a young woman at the top. Is this to make the nuclear image look young and trendy? Or is it so they she can cop the flak when it all goes wrong?


Nuclear Energy Startup Transatomic Backtracks on Key Promises The company, backed by Peter Thiel’s Founders Fund, revised inflated assertions about its advanced reactor design after growing concerns prompted an MIT review. MIT Technology Review by James Temple  February 24, 2017 
Nuclear energy startup Transatomic Power has backed away from bold claims for its advanced reactor technology after an informal review by MIT professors highlighted serious errors in the company’s calculations, MIT Technology Review has learned.

The Cambridge, Massachusetts-based company, founded in 2011 by a pair of MIT students in the Nuclear Science & Engineering department, asserted that its molten salt reactor design could run on spent nuclear fuel from conventional reactors and generate energy far more efficiently than them. In a white paper published in March 2014, the company proclaimed its reactor “can generate up to 75 times more electricity per ton of mined uranium than a light-water reactor.”

Those lofty claims helped it raise millions in venture capital, secure a series of glowing media profiles (including in this publication), and draw a rock-star lineup of technical advisors. But in a paper on its site dated November 2016, the company downgraded “75 times” to “more than twice.” In addition, it now specifies that the design “does not reduce existing stockpiles of spent nuclear fuel,” or use them as its fuel source. The promise of recycling nuclear waste, which poses tricky storage and proliferation challenges, was a key initial promise of the company that captured considerable attention.

“In early 2016, we realized there was a problem with our initial analysis and started working to correct the error,” cofounder Leslie Dewan said in an e-mail response to an inquiry from MIT Technology Review.

The dramatic revisions followed an analysis in late 2015 by Kord Smith, a nuclear science and engineering professor at MIT and an expert in the physics of nuclear reactors.

At that point, there were growing doubts in the field about the company’s claims and at least some worries that any inflated claims could tarnish the reputation of MIT’s nuclear department, which has been closely associated with the company. Transatomic also has a three-year research agreement with the department, according to earlier press releases.

In reviewing the company’s white paper, Smith noticed immediate red flags. He relayed his concerns to his department head and the company, and subsequently conducted an informal review with two other professors.

“I said this is obviously incorrect based on basic physics,” Smith says. He asked the company to run a test, which ended up confirming that “their claims were completely untrue,” Smith says.

He notes that promising to increase the reactor’s fuel efficiency by 75 times is the rough equivalent of saying that, in a single step, you’d developed a car that could get 2,500 miles per gallon.

Ultimately, the company redid its analysis, and produced and posted a new white paper………

The company has raised at least $4.5 million from Peter Thiel’s Founders Fund, Acadia Woods Partners, and Daniel Aegerter of Armada Investment AG. Venture capital veteran Ray Rothrock serves as chairman of the company.

Founders Fund didn’t immediately respond to an inquiry……https://www.technologyreview.com/s/603731/nuclear-energy-startup-transatomic-backtracks-on-key-promises/

Dispelling the false story about why thorium nuclear reactors were not developed

February 1, 2017

Thorium Reactors: Fact and Fiction, Skeptoid  These next-generation reactors have attracted a nearly cultish following. Is it justified?   by Brian Dunning  Skeptoid Podcast #555  January 24, 2017

Podcast transcript     “………True or False? Thorium reactors were never commercially developed because they can’t produce bomb material.

This is mostly false, although it’s become one of the most common myths about thorium reactors. There are other very good reasons why uranium-fueled reactors were developed commercially instead of thorium-fueled reactors. If something smells like a conspiracy theory, you’re always wise to take a second, closer look.

When we make weapons-grade Pu239 for nuclear weapons, we use special production reactors designed to burn natural uranium, and only for about three months, to avoid contaminating it with Pu240. Only a very few reactors were ever built that can both do that and generate electricity. The rest of the reactors out there that generate electricity could have been any design that was wanted. So why weren’t thorium reactors designed instead? We did have some test thorium-fueled reactors built and running in the 1960s. The real reason has more to do with the additional complexity, design challenges, and expense of these MSBR (molten salt breeder) reactors.

In 1972, the US Atomic Energy Commission published a report on the state of MSBR reactors. Here’s a snippet of what was found:

A number of factors can be identified which tend to limit further industrial involvement at this time, namely:

  • The existing major industrial and utility commitments to the LWR, HTGR, and LMFBR.
  • The lack of incentive for industrial investment in supplying fuel cycle services, such as those required for solid fuel reactors.
  • The overwhelming manufacturing and operating experience with solid fuel reactors in contrast with the very limited involvement with fluid fueled reactors.
  • The less advanced state of MSBR technology and the lack of demonstrated solutions to the major technical problems associated with the MSBR concept.

In short, the technology was just too complicated, and it never became mature enough.

It is, however, mostly true that, if we’re going to use a commercial reactor to get plutonium for a bomb, recycling spent fuel from a uranium reactor is easier, and you can get proper weapons-grade plutonium this way. It is possible to get reactor-grade plutonium from a thorium reactor that can be made into a bomb — one was successfully tested in 1962 — but it’s a much lower yield bomb and it’s much harder to get the plutonium.

The short answer is that reduced weapons proliferation is not the strongest argument for switching from uranium fuel to thorium fuel for power generation. Neither reactor type is what’s typically designed and used for bomb production. Those already exist, and will continue to provide all the plutonium that governments are ever likely to need for that purpose.

There’s every reason to take fossil fuels completely out of our system; we have such absurdly better options. If you’re like me and want to see this approach be a multi-pronged one, one that major energy companies, smaller community providers, and individual homeowners can all embrace, then advocate for nukes. You don’t need to specify thorium or liquid fuel or breeders; they’re already the wave of the future — a future which, I hope, will be clean, bright, and bountiful.  https://skeptoid.com/episodes/4555

Debunking the myths of the “New Nuclear” lobby

February 1, 2017

http://www.helencaldicott.com/common-myths-of-the-nuclear-industry/ by  on 18 December 2015 

Myth: the new generation of nuclear reactors are designed to recycle nuclear waste

BUST: These reactors don’t exist

These reactors often spoken of by advocates of nuclear energy are hypothetical. There are none of these “Generation IV” reactors commercially operating anywhere in the world:

  • Even the demonstration plants are still decades away
    • Various designs are still under investigation on paper and have been for many years.
    • The first demonstration plants are projected to be in operation by 2030-2040, so they are yet to be tested and still many years away.
  • Problems with earlier models
    • The specific type of Generation IV reactor that would recycle waste – the Integral Fast Reactor – only exists on paper, but earlier models of fast reactors have been expensive, underperforming, and have had a history of fires and other accidents, with many countries abandoning the technology.
  • These reactors would still produce some waste
    • The Integral Fast Reactor is called “integral” because it would process used reactor fuel on-site, separating plutonium (a weapons explosive) and other long-lived radioactive isotopes from the used fuel, to be fed back into the reactor. It essentially converts long-lived waste into shorter lived waste. This waste would still remain dangerous for a minimum of 200 years (provided it is not contaminated with high level waste products), so we are still left with a waste problem that spans generations.
  • The theory is that these reactors would eat through global stockpiles of plutonium
    • When thinking about recycling waste it’s important not to confuse recycling existing stockpiles of waste with these reactors perpetually running off of their own waste, which they could also be operated to do. If they ran off their own waste, they would not consume existing waste beyond the initial fuel load.

Myth: nuclear is the only alternative to coal for baseload power

BUST: We don’t need baseload

Baseload describes the minimum amount of electricity required by society at a steady rate. It is argued that renewables cannot provide this constant minimum energy because they are unreliable or variable, because the sun doesn’t always shine and the wind doesn’t always blow, so we need nuclear energy to replace our coal-fired baseload stations. We don’t need baseload because:

  • Geographic dispersion of renewable energy stations, storage of renewable energy, and demand management can address fluctuations in energy availability from renewable sources
    • Geographic dispersion of renewable energy power stations would address variability. Although one windmill is variable, a system of windfarms in various locations is much less so.
    • Energy storage can also address variability. Solar thermal energy storage is commercially available, not hypothetical, allowing for the dispatch of energy at peak periods or when the sun isn’t shining.
    • A transparent “smart” electricity grid could inform consumers of dips in energy availability and facilitate energy use that takes availability into account.
  • Nuclear power stations are too inflexible to operate alongside a renewable energy mix
    • Baseload stations are designed to operate continuously and cannot be ramped up or down quickly. To accommodate fluctuations in wind and sun, renewables require “back-up” from power stations that can provide energy flexibly, not constantly as traditional baseload does.
    • South Australia is already operating on nearly 40% renewable energy. Nuclear energy is a poor partner for such a high penetration of renewables.

Myth: the nuclear renaissance

BUST: The nuclear industry is in decline

Whilst the Royal Commission into the Nuclear Fuel Cycle is assessing the feasibility of expanding the nuclear industry in SA, the global nuclear industry is stagnating. Rather than a “nuclear renaissance,” there are:

  • Fewer reactors
    • The commonly cited number of reactors currently operating in the world is 437. This includes reactors that have not been operational for over a year. As of October 2015 there are actually 392 operational reactors.
    • These 392 reactors are 46 fewer than the 438 operating in 2002.
    • Further reductions are expected as a significant proportion of the world’s nuclear reactors are ageing – closure of almost half the world’s total is expected by 2040.
  • Fewer reactors being constructed
    • Nuclear plant construction starts have fallen from fifteen in 2010 to three in 2014.
  • No growth in nuclear share of global power generation
    • The nuclear share of global power generation has stagnated over the last three years at 10.8%, after a steady decline from its peak of 17.6% in 1996.
  • Overall decline in global nuclear energy generation
    • Annual global nuclear electricity generation peaked in 2006 at 2660 TWh. In 2014 it was 9.4% lower than 2006 levels.
  • Slow growth compared with renewables
    • Compared with 1997, in 2014, an additional 185 TWh of electricity was produced from solar, 694 TWh from wind, and just 147 TWh from nuclear.
    • Between 2013 and 2014, electricity generation from solar increased by over 38%, for wind power over 10%, and for nuclear power 2.2%

Myth: expansion of the nuclear industry would be good for the economy

BUST: Expansion of any sector would be good for the economy. Why choose a sector which:

  • Has little potential for growth
    • The nuclear renaissance is a myth.
    • Uranium prices remain below the average cost of production and supply continues to exceed demand. In 2012 BHP Billiton shelved its plan to expand the Olympic Dam mine and has since sacked hundreds of workers. In October 2015 the Wiluna uranium mine in Western Australia was put on hold due to the ongoing downturn in demand and prices.
    • The global market in uranium conversion, enrichment & fuel fabrication is already oversupplied.
  • Is likely to increase electricity costs
    • Nuclear energy has very high capital costs and is expensive and heavily subsidised to offset these costs.
    • The UK government has guaranteed the French company EDF AU$173.30 per megawatt-hour generated by the planned Hinckley Point reactors in Somerset, England, for 35 years. This is 2.5 times higher than wholesale electricity prices in Australia.
  • Has serious environmental, health and weapons proliferation risks – comparable employment can be generated in renewable projects, without the associated risks
    • On return from an overseas visit, Royal Commissioner Kevin Scarce announced at a press conference on 24th July 2015 that the Canadian nuclear industry accounts for 60, 000 jobs – had he gone to Germany to explore alternatives he would have learnt that the renewables industry there has created nearly 400,000 jobs.

Myth: nuclear energy is zero carbon so we need it to mitigate climate change

BUST: Nuclear energy is not zero carbon

  • This ignores life-cycle CO2 emissions
    • These include emissions from the other stages of nuclear power generation, such as uranium mining, milling, enrichment, transport, reactor construction and decommissioning, and mine site rehabilitation.
    • On average, life cycle emissions from wind and solar thermal are found to be much lower than emissions from nuclear energy, and solar PV comparable or lower (depending on the materials used to make the solar cells).
    • Estimates of the life cycle emissions of nuclear energy vary depending on assumptions made. Assuming no attempt should be made to rehabilitate sites, or that radioactive mine waste will be left above ground rather than buried, pushes emissions estimates for nuclear energy down.
  • Emissions from nuclear energy are set to rise
    • Emissions from nuclear will increase significantly over the next few decades as high grade ore is depleted, and increasing amounts of fossil fuels are required to access, mine and mill low-grade ore.
    • To stay below the 2 degrees of global warming that climate scientists widely agree is necessary to avert catastrophic consequences for humans and physical systems, we need to significantly reduce our emissions by 2050, and to do this we need to start this decade. Nuclear is a slow technology:
    • The “Generation IV” demonstration plants projected for 2030-2040 will be too late, and there is no guarantee the pilots will be successful.
    • Nuclear reactors have long lead up times. The global average construction time for existing technology is 9.4 years, with a wide range from 4 to 36 years.
    • Long delays are common – at least three quarters of all reactors currently under construction are delayed. The Flamanville reactor in France began construction in 2007, with commercial operation projected for 2012 – this timeframe has now been pushed back to the fourth quarter of 2018.
    • It has been estimated that it would take 10 to 15 years to build one nuclear power station in Australia. Once accounting for “paying back” the energy from fossil fuels used to construct it – it would take 15 to 20 years for this station to make a contribution to cutting emissions.
    • Renewables are much faster to roll out. The industry standard for wind is 1 year. The first US large scale solar thermal plant with storage, Solanis, took 3 years to build.

Myth: we can isolate high level radioactive waste from the environment for 200,000 years

BUST: There is no operating dump for high level waste anywhere in the world

The Royal Commission is considering the feasibility of establishing a high level nuclear waste dump in South Australia to store other countries nuclear waste.

  • Even countries that actually have stockpiles of high level waste have not been able to solve this problem
    • There is one deep underground repository for long-lived intermediate level waste in New Mexico – the Waste Isolation Pilot Plant. Before it opened it was predicted that it may have one radiation release in 200,0000 years. In February 2014, after 15 years in operation, a waste barrel exploded leading to an aboveground release of airborne radiation. Twenty-two workers tested positive to low-level radiation exposure.
  • Australia can’t even manage the waste it has
    • In the late 1990’s the Australian government “cleaned up” the Maralinga nuclear test site, leaving tonnes of plutonium-contaminated debris buried in shallow, unlined pits. In 2011, 19 of the 85 pits containing contaminated debris were found to be subject to erosion or subsidence, including the main Taranaki trench where the radioactive debris from the weapons trials was buried.

Myth: of an empty interior

BUST: The desert isn’t empty

  • Historically the nuclear industry in Australia has disproportionately impacted Aboriginal communities
    • The uranium mining industry in has a track record of stripping Aboriginal communities of their land rights and heritage protections. For example, the Olympic Dam mine is exempt from the Aboriginal Heritage Act that applies elsewhere in the state.
  • Previous attempts to impose nuclear waste dumps on Aboriginal communities in SA and the NT have faced fierce opposition from traditional owners.

Myth: we can import high level waste at a massive profit and turn it into free electricity

BUST: If nuclear waste was such an asset why would other countries pay us to take it?

The idea that nuclear energy can result in free electricity is not a new one. In the 1950’s it was claimed that atomic energy would make electricity “too cheap to meter.” It hasn’t.

  • On what basis have the calculations been made that building the first repository for high level waste in the world and the first Generation IV reactor in the world could be paid for by the money generated from importing nuclear waste?
    • No repository for high level waste has been built anywhere in the world so we don’t know how much this would cost.
    • No Generation IV reactor has been built anywhere in the world so we don’t know how much this would cost.
    • There is no existing market for high level nuclear waste so we don’t know how much this would make.
  • Pursuing a plan to import high level waste for use in a reactor before such a reactor is built is likely to lead to South Australia being left with stockpiles of waste as these reactors are hypothetical at this stage
  • If this hypothetical reactor ran off its own waste, then:
    • It would only alleviate fuel costs not capital costs which would take years to pay off.
    • Very little waste would actually be required as it would not require waste beyond the initial load, potentially leaving SA with stockpiles of high level waste.
  • If this reactor required an ongoing input of waste, then:
    • This waste would become an asset and countries would stop paying SA to take it, again leaving SA with a high level waste problem, or (if indeed SA managed to do what no other country has) a deep geological repository that cost billions to build with no waste to put in it.
    • Another likely scenario is that instead of the waste being treated as an asset, “recycling” it would be treated as a service, with the operator of the reactor charging a fee to dispose of the nuclear waste. The SA government would then be importing waste from overseas only to pay for its disposal. This “service-model” has been proposed by GE Hitachi for its PRISM fast reactor model for the disposal of stockpiles of plutonium in the UK.

Further information: Friends of the Earth Adelaide

Despite the hype, fast nuclear reactors face a gloomy future

November 21, 2016

Nuclear: The slow death of fast reactors Jim Green, 5 Oct 2016, RenewEconomy,http://reneweconomy.com.au/2016/nuclear-the-slow-death-of-fast-reactors-21046

Generation IV ‘fast breeder’ reactors have long been promoted by nuclear enthusiasts, writes Jim Green, but Japan’s decision to abandon the Monju fast reactor is another nail in the coffin for this failed technology.

Fast neutron reactors are “poised to become mainstream” according to the World Nuclear Association. The Association lists eight “current” fast reactors although three of them are not operating. That leaves just five fast reactors ‒ three of them experimental.

Fast reactors aren’t becoming mainstream. One after another country has abandoned the technology. Nuclear physicist Thomas Cochransummarises the history: “Fast reactor development programs failed in the: 1) United States; 2) France; 3) United Kingdom; 4) Germany; 5) Japan; 6) Italy; 7) Soviet Union/Russia 8) U.S. Navy and 9) the Soviet Navy. The program in India is showing no signs of success and the program in China is only at a very early stage of development.”

The latest setback was the decision of the Japanese government at an extraordinary Cabinet meeting on September 21 to abandon plans to restart the Monju fast breeder reactor.

Monju reached criticality in 1994 but was shut down in December 1995 after a sodium coolant leak and fire. The reactor didn’t restart until May 2010, and it was shut down again three months later after a fuel handling machine was accidentally dropped in the reactor during a refuelling outage. In November 2012, it was revealed that Japan Atomic Energy Agency had failed to conduct regular inspections of almost 10,000 out of a total 39,000 pieces of equipment at Monju, including safety-critical equipment.

In November 2015, the Nuclear Regulation Authority declared that the Japan Atomic Energy Agency was “not qualified as an entity to safely operate” Monju. Education minister Hirokazu Matsuno said on 21 September 2016 that attempts to find an alternative operator have been unsuccessful.

The government has already spent 1.2 trillion yen (US$12bn) on Monju. The government calculated that it would cost another 600 billion yen (US$6bn) to restart Monju and keep it operating for another 10 years.

Decommissioning also has a hefty price-tag ‒ far more than for conventional light-water reactors. According to a 2012estimate by the Japan Atomic Energy Agency, decommissioning Monju will cost an estimated 300 billion yen (US$3bn).

India’s failed fast reactor program   India’s fast reactor program has been a failure. The budget for the Fast Breeder Test Reactor (FBTR) was approved in 1971 but the reactor was delayed repeatedly, attaining first criticality in 1985. It took until 1997 for the FBTR to start supplying a small amount of electricity to the grid. The FBTR’s operations have been marred by several accidents.

Preliminary design work for a larger Prototype Fast Breeder Reactor (PFBR) began in 1985, expenditures on the reactor began in 1987/88 and construction began in 2004 ‒ but the reactor still hasn’t started up. Construction has taken more than twice the expected period. In July 2016, the Indian government announced yet another delay, and there is scepticism that the scheduled start-up in March 2017 will be realised. The PFBR’s cost estimate has gone up by 62%.

India’s Department of Atomic Energy (DAE) has for decades projected the construction of hundreds of fast reactors ‒ for example a 2004 DAE document projected 262.5 gigawatts (GW) of fast reactor capacity by 2050. But India has a track record of making absurd projections for both fast reactors and light-water reactors ‒ and failing to meet those targets by orders of magnitude.

Academic M.V. Ramana writes: “Breeder reactors have always underpinned the DAE’s claims about generating large quantities of electricity. Today, more than six decades after the grand plans for growth were first announced, that promise is yet to be fulfilled. The latest announcement about the delay in the PFBR is yet another reminder that breeder reactors in India, like elsewhere, are best regarded as a failed technology and that it is time to give up on them.”

Russia’s snail-paced program  Russia’s fast reactor program is the only one that could be described as anything other than an abject failure. But it hasn’t been a roaring success either.

Three fast reactors are in operation in Russia ‒ BOR-60 (start-up in 1969), BN-600 (1980) and BN-800 (2014). There have been 27sodium leaks in the BN-600 reactor, five of them in systems with radioactive sodium, and 14 leaks were accompanied by burning of sodium.

The Russian government published a decree in August 2016 outlining plans to build 11 new reactors over the next 14 years. Of the 11 proposed new reactors, three are fast reactors: BREST-300 near Tomsk in Siberia, and two BN-1200 fast reactors near Ekaterinburg and Chelyabinsk, near the Ural mountains. However, like India, the Russian government has a track record of projecting rapid and substantial nuclear power expansion ‒ and failing miserably to meet the targets.

As Vladimir Slivyak recently noted in Nuclear Monitor: “While Russian plans looks big on paper, it’s unlikely that this program will be implemented. It’s very likely that the current economic crisis, the deepest in history since the USSR collapsed, will axe the most of new reactors.”

While the August 2016 decree signals new interest in reviving the BN-1200 reactor project, it was indefinitely suspended in 2014, with Rosatom citing the need to improve fuel for the reactor and amid speculation about the cost-effectiveness of the project.

In 2014, Rosenergoatom spokesperson Andrey Timonov said the BN-800 reactor, which started up in 2014, “must answer questions about the economic viability of potential fast reactors because at the moment ‘fast’ technology essentially loses this indicator [when compared with] commercial VVER units.”

 

China’s program going nowhere fast   Australian nuclear lobbyist Geoff Russell cites the World Nuclear Association(WNA) in support of his claim that China expect fast reactors “to be dominating the market by about 2030 and they’ll be mass produced.”

Does the WNA paper support the claim? Not at all. China has a 20 MWe experimental fast reactor, which operated for a total of less than one month in the 63 months from criticality in July 2010 to October 2015. For every hour the reactor operated in 2015, it was offline for five hours, and there were three recorded reactor trips.

China also has plans to build a 600 MWe ‘Demonstration Fast Reactor’ and then a 1,000 MWe commercial-scale fast reactor. Whether those reactors will be built remains uncertain ‒ the projects have not been approved ‒ and it would be another giant leap from a single commercial-scale fast reactor to a fleet of them.

According to the WNA, a decision to proceed with or cancel the 1,000 MWe fast reactor will not be made until 2020, and if it proceeds, construction could begin in 2028 and operation could begin in about 2034.

So China might have one commercial-scale fast reactor by 2034 ‒ but probably won’t. Russell’s claim that fast reactors will be “dominating the market by about 2030” is unbridled jiggery-pokery.

According to the WNA, China envisages 40 GW of fast reactor capacity by 2050. A far more likely scenario is that China will have 0 GW of fast reactor capacity by 2050. And even if the 40 GW target was reached, it would still only represent aroundone-sixth of total nuclear capacity in China in 2050 ‒ fast reactors still wouldn’t be “dominating the market” even if capacity grows by orders of magnitude from 0.02 GW (the experimental reactor that is usually offline) to 40 GW.

 Travelling-waves and the non-existent ‘integral fast reactor’

Perhaps the travelling-wave fast reactor popularised by Bill Gates will come to the rescue? Or perhaps not. According to theWNA, China General Nuclear Power and Xiamen University are reported to be cooperating on R&D, but the Ministry of Science and Technology, China National Nuclear Corporation, and the State Nuclear Power Technology Company are all skeptical of the travelling-wave reactor concept.

Perhaps the ‘integral fast reactor’ (IFR) championed by James Hansen will come to the rescue? Or perhaps not. The UK and US governments have been considering building IFRs (specifically GE Hitachi’s ‘PRISM’ design) for plutonium disposition ‒ but it is almost certain that both countries will choose different methods to manage plutonium stockpiles.

In South Australia, nuclear lobbyists united behind a push for IFRs/PRISMs, and they would have expected to persuade a stridently pro-nuclear Royal Commission to endorse their ideas. But the Royal Commission completely rejected the proposal, noting in its May 2016report that advanced fast reactors are unlikely to be feasible or viable in the foreseeable future; that the development of such a first-of-a-kind project would have high commercial and technical risk; that there is no licensed, commercially proven design and development to that point would require substantial capital investment; and that electricity generated from such reactors has not been demonstrated to be cost competitive with current light water reactor designs.

A future for fast reactors?

Just 400 reactor-years of worldwide experience have been gained with fast reactors. There is 42 times more experience with conventional reactors (16,850 reactor-years). And most of the experience with fast reactors suggests they are more trouble than they are worth.

Apart from the countries mentioned above, there is very little interest in pursuing fast reactor technology. Germany, the UK and the UScancelled their prototype breeder reactor programs in the 1980s and 1990s.

France is considering building a fast reactor (ASTRID) despite the country’s unhappy experience with the Phénix and Superphénix reactors. But a decision on whether to construct ASTRID will not be made until 2019/20.

The performance of the Superphénix reactor was as dismal as Monju. Superphénix was meant to be the world’s first commercial fast reactor but in the 13 years of its miserable existence it rarely operated ‒ its ‘Energy Unavailability Factor’ was 90.8% according to the IAEA. Note that the fast reactor lobbyists complain about the intermittency of wind and solar!

A 2010 article in the Bulletin of the Atomic Scientists summarised the worldwide failure of fast reactor technology: “After six decades and the expenditure of the equivalent of about $100 billion, the promise of breeder reactors remains largely unfulfilled. … The breeder reactor dream is not dead, but it has receded far into the future. In the 1970s, breeder advocates were predicting that the world would have thousands of breeder reactors operating this decade. Today, they are predicting commercialization by approximately 2050.”

Allison MacFarlane, former chair of the US Nuclear Regulatory Commission, recently made this sarcastic assessment of fast reactor technology: “These turn out to be very expensive technologies to build. Many countries have tried over and over. What is truly impressive is that these many governments continue to fund a demonstrably failed technology.”

While fast reactors face a bleak future, the rhetoric will persist. Australian academic Barry Brook wrote a puff-piece about fast reactors for the Murdoch press in 2009. On the same day he said on his website that “although it’s not made abundantly clear in the article”, he expects conventional reactors to play the major role for the next two to three decades but chose to emphasise fast reactors “to try to hook the fresh fish”.

So that’s the nuclear lobbyists’ game plan − making overblown claims about fast reactors and other Generation IV reactor concepts, pretending that they are near-term prospects, and being less than “abundantly clear” about the truth.

Dr Jim Green is the national anti-nuclear campaigner with Friends of the Earth Australia and editor of the Nuclear Monitor newsletter published by the World Information Service on Energy.

Integral Fast Reactors – dispelling the pro nuclear propaganda about them

September 12, 2016

NuClear News August 16  Integral Fast Reactors (IFRs) George Monbiot told the Radio 4’s Today Programme on the 29th July that the “humungous waste problem at Sellafield could be turned into a humungous asset by using a technology such as Integral Fast Reactors (IFR) to turn it into an energy source.” He said “it gets rid of the waste, and according to one estimate could provide all the UK’s energy needs for 500 years.” He said that instead of wasting our money on Hinkley Point C Government should invest in the development of IFRs to “see if we can use it to crack two problems at once – our nuclear waste mountain [and] create a massive source of low carbon energy”. The only problem is, as Professor Catherine Mitchell just had time to point out, it wouldn’t work. To claim that they are proliferation resistant and help “use up waste” is just plain wrong.

The IFR would be a liquid-sodium-cooled fast-neutron reactor. The use of liquid sodium as a coolant has proved to be a huge problem in the past – it catches fire on contact with air. Over the years the world’s leading nuclear technologists have built about three dozen sodium-cooled fast reactors. Of the 22 whose histories are mostly reported, over half had sodium leaks, four suffered fuel damage (including two partial meltdowns), several others had serious accidents, most were prematurely closed, and only six succeeded. As Dr. Tom Cochran of NRDC notes, fast reactor programs were tried in the US, UK, France, Germany, Italy, Japan, the USSR, and the US and Soviet Navies. All failed. After a half-century and tens of billions of dollars, the world has one operational commercial-sized fast reactor (Russia’s BN600) out of 438 commercial power reactors, and it’s not fuelled with plutonium.

IFRs would require an ambitious new nuclear fuel cycle because they would be fuelled with a metallic alloy of uranium and plutonium. In theory they would operate in conjunction with onsite ‘pyroprocessing’ to separate plutonium and other long-lived radioisotopes. Unlike the reprocessing plants currently at Sellafield they wouldn’t separate pure plutonium, but would keep the plutonium mixed with other long-lived radioisotopes.

Its novel technology, replacing solvents and aqueous chemistry of current reprocessing with high-temperature pyrometallurgy and electrorefining, would incur different but major challenges, greater technical risks and repair problems, and speculative but probably worse economics. Reprocessing of any kind makes waste management more difficult and complex, increases the volume and diversity of waste streams, increases by several- to many-fold the cost of nuclear fuelling, and separates bomb-usable material that can’t be adequately measured or protected. In the UK the Government would be unlikely to want to see more plutonium separated so any IFR built here – at least to begin with – would probably just be used to use up our huge stockpile of plutonium. The problem is that the plutonium is stored as plutonium oxide which would have to be converted to plutonium metal probably involving the fluorination of plutonium dioxide, normally with highly corrosive hydrogen fluoride, to produce plutonium fluoride, which is subsequently reduced using high purity calcium metal to produce metallic plutonium and a calcium fluoride slag.

IFRs are often claimed to “burn up nuclear waste” and make its “time of concern … less than 500 years” rather than 10,000-100,000 years or more. That’s wrong: most of the radioactivity comes from fission products, including very long lived isotopes like iodine-129 and technicium-99, and their mix is broadly similar in any nuclear fuel cycle.

IFRs’ wastes may contain less transuranics, but at prohibitive cost and with worse occupational exposures, routine releases, accident and terrorism risks, proliferation, and disposal needs for intermediate- and low-level wastes. It’s simply a dishonest fantasy to claim, that such hypothetical and uneconomic proposals can deal with the humungous waste problem at Sellafield.

It is claimed that IFRs could produce lots of greenhouse-friendly energy and while they’re at it they can ‘eat’ nuclear waste and convert fissile materials, which might otherwise find their way into nuclear weapons, into useful energy. Too good to be true? Sadly, yes. Nuclear engineer Dave Lochbaum from the Union of Concerned Scientists writes: “The IFR looks good on paper. So good, in fact, that we should leave it on paper. For it only gets ugly in moving from blueprint to backyard.”http://www.no2nuclearpower.org.uk/nuclearnews/NuClearNewsNo87.pdf

Dubious economics of Small Modular Nuclear Reactors

September 12, 2016

FOR GENERAL ATOMICS, SMALLER NUCLEAR PLANTS ARE BEAUTIFUL, San Diego Union Tribune  But can its technology work? And is it even needed? BY ROB NIKOLEWSKI July 15, 2016 The scientists and engineers at General Atomics think the future of nuclear energy is coming on the back of a flatbed truck.

And the leadership at the San Diego-based company, which has been developing nuclear technologies for more than 60 years, has already spent millions in the expectation that its ambitious plans for the next generation of reactors will actually work.

“We have technology that we think is going to qualitatively change the game,” saidChristina Back, vice president of nuclear technologies and materials at General Atomics……..it’s designed to produce a reactor that’s so compact that the company’s handout material shows it being transported by tractor-trailer.

But EM² is still a long way from becoming a day-to-day reality in a fast-changing energy landscape.

Just building a prototype, Back said, is at least 10 years away and, “we’re looking at 2030-ish” before a commercial reactor could be up and running using EM² technology……And there are no guarantees the design will work……

Here in the United States, natural gas may pose an even greater challenge. Techniques such as hydraulic fracturing and horizontal drilling have unlocked vast amounts of natural gas in North America and the increased supply has lowered prices. Utilities are increasingly turning to natural gas-fired power plants to generate electricity, at least in large part, because gas burns much cleaner than coal.

Where does that leave nuclear?…….. nuclear has long faced intense opposition from those who consider it an inherently dangerous source of power and the EM² technology is being developed at a time when nuclear plants are getting shut down in places such as Illinois, Vermontand New York.

The environment for nuclear power in California is even more daunting……Critics of nuclear power point  to the falling costs and rising production numbers for renewable energy, as well as a mandate from the California Public Utilities Commission ordering the state’s big three investor-owned utilities to add 1.3 gigawatts of energy storage to their grids by the end of the decade.

McKinzie said the success of any advanced nuclear technology largely rests on its performance in the prototype stage, which does not come cheaply.”Safety and performance really have to be addressed by the protoype,” said McKinzie, who holds a doctorate in experimental nuclear physics from the University of Pennsylvania. “When you’re talking on the order of a billion dollars to get to that point, that’s a pretty high hurdle.”….The leadership at General Atomics has invested $40 million so far in the EM² technology…….General Atomics was one of five companies that received a share of a $13 million award from the U.S. Department of Energy in October 2014…….

Sodium cooled nuclear reactors safer? Not necessarily so

September 12, 2016

While no sodium-cooled reactors currently operate in the United States, the U.S. Department of Energy (DOE) is working with industry on a number of “advanced” reactor designs, including the Sodium-Cooled Fast Reactor (SFR).  One of the SFR’s safety advantages, to quote the DOE, is that the design provides a “Long grace period for corrective action, if needed.” SRE’s meltdown transpired over a two-week period. Fermi Unit 1 had indications of inadequate core cooling in June that were repeated in August and dismissed until extensive damage occurred in October 1966. The “if needed” grace period is never long enough when warning sign after warning sign is dismissed or ignored.

DOE did acknowledge some “challenges” for the SFR: their higher speed and higher energy neutrons can embrittle and degrade nearby materials, liquid sodium coolant reactors with air and water and degrades concrete, and the opaqueness of the liquid sodium coolant complicates in-service inspections and maintenance.

Thank goodness for the “Long grace period for corrective actions, if needed.” That and the fact that SFRs only operate in cyberspace where the primary threat is carpal tunnel syndrome


Nuclear Plant Accidents: Fermi Unit 1, Union of Concerned Scientists
 , director, Nuclear Safety Project | July 12, 2016, Disaster by Design

Jorge Agustin Nicolás Ruiz de Santayana y Borrás, also known as George Santayana, wrote that “Those who cannot remember the past are condemned to repeat it.”
Disaster by Design/Safety by Intent #39 described the partial meltdown of the reactor core at the Sodium Reactor Experiment (SRE) in California. Workers at the Fermi Unit 1 reactor in Michigan must have remembered this accident pretty well, since they duplicated almost every key aspect of it just seven years later.

So, perhaps a companion to Santayana’s point is “Those who remember the past are condemned to repeat it, unless they take steps to prevent it.” Had SRE’s owners copyrighted their accident script, Fermi Unit 1’s owner would probably have had to mail them a royalty check.

Fermi Unit 1(Newport, MI) – October 1966 Unit 1 at the Enrico Fermi Atomic Power Plant had a fast breeder reactor cooled by liquid sodium. The operators achieved initial criticality of the reactor on August 23, 1963. An extensive testing program kept the reactor at very low power levels—too low to make electricity—until December 29, 1965. Completion of the low-power testing program enabled the operators to increase the reactor power level to the 10% and later 50% power testing plateaus.

The 50% testing plateau included a 60-hour steady state run that began on August 5, 1966, and ended on August 7. During this run, workers noticed abnormally high temperatures of the liquid sodium flowing out of some fuel elements. Outlet temperatures 20 to 25% higher for one fuel element than outlet temperatures for other fuel elements had been observed during June 1966. The outlet temperatures were 40 to 47% above other outlet temperatures during the August 1966 run at 50% power.

The reactor was shut down after the 60-hour run. Workers relocated four fuel elements that exhibited high outlet temperatures to other positions in the reactor core. They wanted to determine whether the high temperatures were caused by the fuel elements or were due to faulty thermocouples providing falsely high indications.

The operators restarted the reactor on October 4, 1966. They slowly and steadily increased the reactor power level. By the mid-afternoon of October 5, the reactor power level had reached about 15%. Plant parameters did not look right to the operators. The outlet temperatures of some fuel elements still indicated abnormally high. And now the operators noticed that the control rods were more withdrawn from the reactor core than expected for this power level.

At 3:09 pm, plant conditions deteriorated further. The radiation monitors in the ventilation exhaust ducts from the reactor building alarmed and automatically shut dampers to isolate flow to the environment from this pathway. This radiation monitor’s reading could not be easily dismissed as a faulty instrument—radiation monitors in four other areas of the plant were also indicating high readings. The operators shut down the reactor.

Debris in the reactor

Two fuel elements were found to have partially melted due to inadequate cooling. A crumpled piece of metal was recovered from the core sodium inlet plenum at the bottom of the reactor vessel below the reactor core region. Media reports at the time claimed that a beer can left inside the vessel or piping during construction blocked flow through the reactor core and caused the partial meltdown.

Examination of the metal debris determined that neither alcohol nor poor housekeeping caused the partial meltdown. Instead, a feature installed late in the reactor’s design intended to provide better protection in event of a meltdown triggered a meltdown………

Missed Opportunities = Pre-Existing Problems = Reactor Accident

Like the sinking of the Titanic leading to the capsizing of the Eastland three years later, the good intention of making the plant safer actually compromised its safety……….

While no sodium-cooled reactors currently operate in the United States, the U.S. Department of Energy (DOE) is working with industry on a number of “advanced” reactor designs, including the Sodium-Cooled Fast Reactor (SFR).  One of the SFR’s safety advantages, to quote the DOE, is that the design provides a “Long grace period for corrective action, if needed.” SRE’s meltdown transpired over a two-week period. Fermi Unit 1 had indications of inadequate core cooling in June that were repeated in August and dismissed until extensive damage occurred in October 1966. The “if needed” grace period is never long enough when warning sign after warning sign is dismissed or ignored.

DOE did acknowledge some “challenges” for the SFR: their higher speed and higher energy neutrons can embrittle and degrade nearby materials, liquid sodium coolant reactors with air and water and degrades concrete, and the opaqueness of the liquid sodium coolant complicates in-service inspections and maintenance.

Thank goodness for the “Long grace period for corrective actions, if needed.” That and the fact that SFRs only operate in cyberspace where the primary threat is carpal tunnel syndromehttp://allthingsnuclear.org/dlochbaum/nuclear-plant-accidents-fermi-unit-1

Busting Australian Senator Sean Edward’s deceptive spin about PRISM nuclear reactors

June 11, 2016

not a single PRISM [ (Power Reactor Innovative Small Module]  has actually been built…. the commercial viability of these technologies is unproven

Crucially, under the plan, Australia would have been taking spent fuel for 4 years before the first PRISM came online, assuming the reactors were built on time.

if borehole technology works as intended, and at the prices hoped for, why would any country pay another to take their waste for $1,370,000 a tonne, when a solution exists that only costs $216,000 a tonne, less than one sixth of the price?

The impossible dream Free electricity sounds too good to be true. It is. A plan to produce free electricity for South Australia by embracing nuclear waste sounds like a wonderful idea. But it won’t work.  THE AUSTRALIA INSTITUTE Dan Gilchrist February 2016

“……NEW TECHNOLOGY  This comprehensively researched submission asserts that a transformative opportunity is to be found in pairing established, mature practices with cuspof-commercialisation technologies to provide an innovative model of service to the global community. (emphasis added) Edwards’ submission to the Royal Commission

Two elements of the plan – transport of waste, and temporary storage in the dry cask facility – are indeed mature. There is a high degree of certainty that these technologies will perform as expected, for the prices expected.
 It should be noted, however, that the price estimates used in the Edwards plan for the dry cask storage facility draw on estimates for an internal US facility to be serviced by rail.17 No consideration has been given to the cost of shipping the material from overseas.
Around a dozen ship loads a year would be needed to import spent fuel at the rate called for in the plan.18 It is likely that a dedicated port would also need to be constructed. The 1999 Pangea plan, which proposed a similar construction of a commercial waste repository in Australia, made allowances for “…international transport in a fleet of special purpose ships to a dedicated port in Australia”. 19
 Needless to say, building and operating highly specialised ships, or paying others to do so, would not be free. Building and operating a dedicated port would not be free. Yet none of these activities are costed in the plan.
Furthermore, beyond the known elements of transport and temporary storage, the principle technologies depended on – PRISM reactors and borehole disposal – are precisely those which are glossed over as being on the “cusp of commercialisation”.
 To put it another way: the commercial viability of these technologies is unproven.
 PRISM  [Power Reactor Innovative Small Module]The PRISM reactor is based on technology piloted in the US, up until the program was cancelled in 1994. 20 It offers existing nuclear-power nations what appears to be a tremendous deal: turn those massive stockpiles of waste into fuel, and reduce the long-term waste problem from one of millennia to one of mere centuries. It promises to be cheap, too, with the small modular design allowing mass production.
 Despite this promise, not a single PRISM reactor has actually been built. Officials at the South Korean Ministry of Science have said that they hope to have advanced reactors – if not the PRISM then something very similar – up and running by 2040.21 The Generation IV International Forum expects the first fourth generation reactors – of which the PRISM is one example – to be commercially deployed in the 2030’s.2
 After decades spent developing the technology in the United States, a US Department of Energy report dismissed the use of Advanced Disposition Reactors (ADR), a class which includes the PRISM-type integral fast reactor concept, as a way of drawing down on excess plutonium stocks. It compares it unfavourably to the existing – and expensive – mixed oxide (MOX) method of recycling nuclear fuel.
The ADR option involves a capital investment similar in magnitude to the [MOX Fuel Fabrication Facility] but with all of the risks associated with first of-a kind new reactor construction (e.g., liquid metal fast reactor), and this complex nuclear facility construction has not even been proposed yet for a Critical Decision …. Choosing the ADR option would be akin to choosing to do the MOX approach all over again, but without a directly relevant and easily accessible reference facility/operation (such as exists for MOX in France) to provide a leg up on experience and design.23
 Nevertheless, the Edwards plan hopes to have a pair of PRISMs built in 10 years.
Crucially, under the plan, Australia would have been taking spent fuel for 4 years before the first PRISM came online, assuming the reactors were built on time.
 The risk is that these integral fast reactors might turn out to be more expensive than anticipated and prove to be uneconomical. This could leave South Australia with expensive electricity and no other plan to deal with any of the spent fuel acquired to fund the reactors in the first place.
 For countries that have no long-term solution for their existing waste stockpiles, the business case for constructing a PRISM reactor is much clearer: even if the facility turns out to be uneconomical, it will nevertheless be able to process some spent fuel, thus reducing waste stockpiles. This added benefit makes the financial risk more worthwhile for such countries
Australia, on the other hand, doesn’t have an existing stockpile of high-level nuclear waste. The Edwards plan would see Australia acquire that problem in the hopes of solving it with technology never before deployed on a commercial scale. We would be buying off the plan, with many billions of dollars at stake, in the hopes that we, with little experience and minimal nuclear infrastructure, could solve a problem which has vexed far more experienced nations for decades.
 By the time the first PRISM is due to come online it will be too late to turn back, no matter what unexpected problems may be encountered. Australia would have acquired thousands of tonnes of spent fuel with no other planned use.
Counting on the development of other PRISM reactors around the world is another gamble. The proposed reprocessing plant accounts for all of the 4,000 tonne reduction in waste over the life of the plan. Australia will have no use for most of this material – the rest must be used by other PRISMs. If PRISMs are not widely adopted, Australia will have no takers. This could leave Australia with even more than 56,000 tonnes of waste, with no planned or costed solution.
 Borehole disposal 
The second element of the plan is the long-term disposal of waste from the PRISM reactors in boreholes. However this technology is still being tested.
 According to an article in the journal Science, bore-hole technology has significant issues to overcome.
The Nuclear Waste Technical Review Board, an independent panel that advises [the United States Department of Energy] DOE, notes a litany of potential problems: No one has drilled holes this big 5 kilometers into solid rock. If a hole isn’t smooth and straight, a liner could be hard to install, and waste containers could get stuck. It’s tricky to see flaws like fractures in rock 5 kilometers down. Once waste is buried, it would be hard to get it back (an option federal regulations now require). And methods for plugging the holes haven’t been sufficiently tested.
However, if estimates used by the Edwards plan are correct, and boreholes can be made to work as hoped, it would allow high-level nuclear waste to be disposed of for only $216,000 per tonne. The Edwards plan reduces this further for Australia, quoting only $138,000 a tonne, on the understanding that our own waste would be comparatively low level output from a PRISM – disregarding, as discussed above, the 56,000 tonnes left over.
 Nevertheless, the figure of $216,000 per tonne is important, because that is the price at which any country with suitable geology could store high level waste. It should be noted that Australia will not have exclusive access to borehole technology. If it is proven to be as effective as hoped there is nothing stopping many other countries from using it.
The International Atomic Energy Agency (IAEA) notes that borehole siting activities have been initiated in Ghana, the Philippines, Malaysia and Iran.26 A pilot program is underway in the US.27 The range of geologies where boreholes may be effective is vast.
This may have serious implications for Australia’s waste disposal industry, given that other countries could build their own low-cost solution, or offer it to potential customers.
 However, if boreholes do not work as hoped, Australia will have no costed solution for the final disposal of high-level waste from its PRISM facilities. Australia would find itself in the very situation other countries had paid it to avoid.
PRICE What are countries willing to pay to have their spent fuel taken care of?
 This is an open question, as to date there is no international market in the permanent storage of high-level waste.
A figure of US$1,000,000 (A$1,370,000) per tonne is used by the Edwards plan, but this estimate does not appear to have any rigorous basis.
The Edwards plan gives only one real world example of a similar price: a recent plan by Taiwan to pay US$1,500,000 per tonne to send a small amount of its waste overseas for reprocessing. From this, the report concludes that an estimate of US$1,000,000 is entirely reasonable.
 However, the report neglects to mention several important facts about Taiwan’s proposal. First, this spent fuel was to be reprocessed, not disposed of, and most of the material was to be reclaimed as usable fuel. 29 This fuel would not be returned, but would continue to be owned by Taiwan, and be available for sale.30 If they could find a buyer, Taiwan might expect to recoup part or all of their costs by selling the reclaimed fuel to a third party.
 Second, the 20 percent of material to be converted into vitrified waste by the process was to be returned to Taiwan – no long-term storage would be part of the deal.
Third, and most importantly, the tender was suspended by the Taiwanese government pending parliamentary budget review.31 This occurred in March 2015, several months before the Edwards plan was submitted to the Royal Commission.
 Not only was the Taiwanese government proposing a completely different process to the one proposed by the Edwards plan, they weren’t willing to pay for it anyway. So the use of the Taiwanese case as a baseline example for the price Australia might hope to receive to store waste simply does not stand up to scrutiny.
The plan does briefly mention that the US nuclear power industry has set aside US$400,000 a tonne for waste disposal – to cover research, development and final disposal.32 This much lower figure is disregarded for no apparent reason, making the mid-scenario’s assumption of a price more than double this, at US$1,000,000, seem dubious. Even the pessimistic case considers a price of US$500,000 a tonne, higher than the US savings pool.
As will be discussed in the next section, the question remains: if borehole technology works as intended, and at the prices hoped for, why would any country pay another to take their waste for $1,370,000 a tonne, when a solution exists that only costs $216,000 a tonne, less than one sixth of the price?
 If South Australia led the way to prove the viability of the borehole disposal method and took on the risks associated with a first of its kind commercial operation, many other countries should be expected to use the technology for their own waste, or could offer those services to others. This alone makes the idea that other countries would pay $1,370,000 a tonne highly unlikely. ….https://d3n8a8pro7vhmx.cloudfront.net/conservationsa/pages/496/attachments/original/1455085726/P222_Nuclear_waste_impossible_dream_FINAL.pdf?1455085726

The case against Small Modular Nuclear Reactors (SMRs)

March 20, 2016

To make this huge investment even begin to make sense you need to do it in a big way.  It is unclear if the mass production savings of SMRs will offset the economy of scale advantages of current designs. what is clear is that attempts to use modular components in the four AP1000s currently under construction in the US have utterly failed to keep costs down, or even controlled. 

And similarly this supposed benefit will not help the first handful of SMRs.  The non-partisan group Taxpayers for Common Sense gave SMR’s their Golden Fleece Award for using taxpayer money where business should be paying.

The small reactors we find in nuclear military vessels produce electricity at ridiculously high prices per kilowatt.  This is why no engineering firm is proposing these well understood designs for mass production.  The cost of naval small reactor power never becomes competitive, even if mass produced. 

Small reactors reduce costs by eliminating the secondary containment,increasing the chances nuclear accidents will not be contained.  There is still no rad-waste solution for these reactors.  Oh, and there are not even any finished designs for these reactors, much less prototypes.

Small is Ugly –  the case against Small Modular Reactors  http://funologist.org/2012/12/09/small-is-ugly-the-case-against-small-modular-reactors/

[With apologies to E.F. Schumacher, who wrote the important book Small is Beautiful] January 2016

“Don’t bet against technology.” is the advice i give to people who are saying certain industrial developments won’t happen, or will not happen soon. There are breakthroughs everyday and most of them are not forecasted much in advance.  So why am I not excited about the recent Department of Energy’s decision to fund the development of Small Modular Reactor (SMR) designs?

So the hype runs like this.  We want a reactor which is smaller because the big reactors are inflexible on the grid, often providing more power than an area (or even small countries) can use.  Small is flexible.  Small reactors can be built in factories and shipped to the site nearly complete – reversing the current ratio of 70% of the reactor built on site and 30% in the factory.  Mass production will help avoid cost overruns and delays which plague larger reactors.  Smaller reactors can be refueled less frequently and will require smaller staff to run them.  We need a mix of energy solutions, rather than depending on just fossil sources and renewables.  The navy has successfully used small reactors to power aircraft carriers and submarines successfully for years.  Let’s just take this technology to the private sector.

Sounds pretty compelling right?  It is no surprise these reactors have broad bi-partisan support in congress.

Small is flexible.  But it turns out that 180 to 250 MW of these new designs is not actually small.  The obstacle Germany and other countries face as they move to increasingly renewable solutions is that these big point source power producers interfere with grid distribution; basically renewable electricity has to be routed around them.  This is why the closure of reactors is so important in terms of building a real flexible renewables feed network of microgrids.  Big reactors are a big problem for the grid, these small reactors are still big enough to be a problem.

It is certainly possible that small reactors could be built in factories and shipped to sites nearly complete.  It is not a coincidence that large reactors have been built for so long and in so many places around the world by so many different engineering firms with some of the highest paid executives and engineers in the world.  I don’t like them, but these are not stupid people.

There are huge fixed costs associated with getting reactors running.  You need tremendous water supplies, large grid connections, waste and fuel handling facilities – there are favorable economies of scale to large reactors.  The reason dozens of engineering firms in over 30 countries around the globe have built big reactors (and multiple units wherever they could) is not because they all made the same mistake, it is because to make this huge investment even begin to make sense you need to do it in a big way.  It is unclear if the mass production savings of SMRs will offset the economy of scale advantages of current designs. what is clear is that attempts to use modular components in the four AP1000s currently under construction in the US have utterly failed to keep costs down, or even controlled.  And similarly this supposed benefit will not help the first handful of SMRs.  The non-partisan group Taxpayers for Common Sense gaveSMR’s their Golden Fleece Award for using taxpayer money where business should be paying.

The small reactors we find in nuclear military vessels produce electricity at ridiculously high prices per kilowatt.  This is why no engineering firm is proposing these well understood designs for mass production.  The cost of naval small reactor power never becomes competitive, even if mass produced.  And nuclear naval vessels don’t have to worry about cooling water, making them structurally cheaper than the proposed new SMRs.

The energy mix argument is a throwaway.  We can generate energy by hooking teenagers with ipods up to stationary bicycles and running turbines.  We don’t do this because it makes no economic sense.  Neither do nukes, large or small.

What is really happening is that the nuclear industry is not only not looking at the much hyped Renaissance, it is in its death throes.   At what was perhaps the height of the so-called Nuclear Renaissance, October 2010, 17 companies and consortium were applying for licenses to build 30 reactors in US. But by the beginning of 2011 over half of these projects had been officially abandoned, with most of the rest quite unlikely to ever be built.  Five reactors are under construction in the US, 2 in Georgia (Vogtle), 2 in South Carolina (VC Summer)  and Watts Bar II in Tennessee which was started  in 1973.  All of these plants are delayed and overbudget, despite 4 of them having started construction in the last 18 months.

Add to this the lower price of natural gas, the continuing decreasing cost of renewables, Fukushima market jitters, the Obama administration cutting loan guarantees for new reactor construction and there is not much of a future for old style large reactors.  [It is worth noting in the first 10 months of 2012, renewable energy sources accounted for 46% of all new installed capacity in the US.]

Small reactors reduce costs by eliminating the secondary containment,increasing the chances nuclear accidents will not be contained.  There is still no rad-waste solution for these reactors.  Oh, and there are not even any finished designs for these reactors, much less prototypes.

Don’t bet against technology.  But don’t waste billions and decades researching unproven designs which will likely never be economical, when there are safer, cleaner, cheaper solutions at hand.

Union of Concerned Scientists updated critique of small reactors.

Update July 2015:  The GAO report recently released sees many problems with SMRs and advanced reactor designs, including the likely inferior cost profile compared with real renewables.  More importantly, since this original writing Westinghouse has dropped out of SMR development citing that “there are no customers

Update January 2016 from the Ecologist Magazine: The US Government Accountability Office released a report in July 2015 on the status of small modular reactors (SMRs) and other ‘advanced’ reactor concepts in the US. The report concluded:

“While light water SMRs and advanced reactors may provide some benefits, their development and deployment face a number of challenges … Depending on how they are resolved, these technical challenges may result in higher-cost reactors than anticipated, making them less competitive with large LWRs [light water reactors] or power plants using other fuels …

“Both light water SMRs and advanced reactors face additional challenges related to the time, cost, and uncertainty associated with developing, certifying or licensing, and deploying new reactor technology, with advanced reactor designs generally facing greater challenges than light water SMR designs.

“It is a multi-decade process, with costs up to $1 billion to $2 billion, to design and certify or license the reactor design, and there is an additional construction cost of several billion dollars more per power plant.”

[Edited by Judy Youngquest]